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Abstract— Diminishing reliability of semiconductor
technologies and decreasing power budgets per com-
ponent hinder designing next-generation high perfor-
mance computing (HPC) systems. Both constraints
strongly impact memory subsystems, as DRAM main
memory accounts for up to 30 to 50 percent of a node’s
overall power consumption, and is the subsystem that
is most subject to faults. Improving reliability requires
stronger error correcting codes (ECCs), which incur
additional power and storage costs. It is critical to
develop strategies to uphold memory reliability while
minimising these costs, with the goal of improving the
power efficiency of computing machines.
We introduce a methodology to dynamically estimate

the vulnerability of data, and adjust ECC protection
accordingly. Our methodology relies on information
readily available to runtime systems in task-based
dataflow programming models, and the existing Vir-
tualized Error Correcting Code (VECC) schemes to
provide adaptable protection. Guiding VECC using
vulnerability estimates offers a wide range of reliability-
redundancy trade-offs, as reliable as using expensive
offline profiling for guidance and up to to 25% safer
than VECC without guidance. Runtime-guided VECC
is more efficient than a stronger uniform ECC, reducing
DIMM lifetime failure from 1.84% down to 1.26% while
increasing DRAM energy consumption by only 1.03×.

Index Terms—Vulnerability, Runtime Systems, Er-
ror Correcting Codes, DRAM

I. Introduction

Errors become more common as silicon technologies
shrink and become more vulnerable. Manufacturing vari-
ability and circuit ageing cause intermittent or permanent
faults [4, 5], while effects such as radiation or small volt-
age/frequency margins cause transient faults [31]. Growing
memory sizes in supercomputers and data centers further
exacerbate the effects of errors in memory.

The standard way of tolerating all these forms of errors
is to apply an error correcting code (ECC). However,
ECC comes with overheads in terms of storage space and
power consumption. This increased power cost constitutes
an important constraint in areas from high performance

computing (HPC) [13] to mobile devices [21], making it
undesirable to uniformly increase ECC strength as an
answer to higher fault rates. It is preferable to protect data
selectively by applying strong ECC to high-risk memory
regions only, while cheaper protection can be used on lower
risk regions. For this to be possible, we need to develop
methodologies to automatically and dynamically quantify
the vulnerability of the different portions of data stored in
memory before a program executes. Prior work on mea-
suring memory vulnerability relies on offline application
profiling [10, 11, 15, 36], but online methods are needed
for widespread deployment.
At the same time, the growing complexity of HPC ma-

chines increasingly impedes their programmability, which
has motivated the emergence of novel task-based dataflow
programming models [3, 6, 9, 18, 25]. These models fa-
cilitate the programmer’s work by providing abstractions
(tasks and data dependencies) and supporting software
(the runtime system). With an initial focus on scheduling
work transparently, runtime systems are used for many
dynamic optimisations, such as prefetching or partitioning
caches [17, 26].
Our key idea is to exploit the opportunity presented

by runtime systems to estimate memory vulnerability
online, and to allow adapting ECC protection dynamically
using these estimates. We evaluate the vulnerability of
the memory pages allocated by each parallel workload
using the programming model’s dataflow dependencies,
which are expressed in the source code and exposed to the
runtime system. This allows the runtime system to predict
the future data accesses to each memory location, which
are a key factor in the probability of encountering an error
at this location. For example, data that is overwritten by
subsequent stores or that is never consumed by an applica-
tion has no impact on program state. The ability to detect
this kind of behaviour online is then exploited to target
the most vulnerable memory pages for increased ECC
protection using the VECC scheme [35], with the aim of
reducing the failure rate for any storage overhead setting.
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The main contributions of this paper are:
• A methodology to estimate the vulnerability of mem-

ory at the start of a program’s execution, that relies
only on information available to the runtime system.

• Selecting memory pages for additional protection
based on their estimated vulnerability, to minimise
DRAM failures for any given redundancy constraint.
This strategy can be used online and performs as well
as expensive offline simulator analysis, with at most
a 1.92% relative difference in failure rates.

• An in-depth evaluation of the performance, power,
and reliability impact of selective memory protec-
tion, for various protected page selection strategies,
highlighting the power efficiency of VECC strategies,
which achieve 31% failure reductions at a 1.04×
energy cost.

The paper is organised as follows: Section II presents
the background on memory vulnerability and adjustable
ECC schemes. We present in Section III an overview of the
runtime-guided ECC proposal, detailing in Section IV the
online vulnerability model, and in Section V, the adapt-
able ECC. In Section VI we describe the methodology
and our various frameworks, in Section VII we present the
evaluation, and in Section VIII our conclusions.

II. Background

Previous work introduced techniques and metrics to pro-
tect and evaluate the vulnerability of data stored in mem-
ory, as well as programming models relying on runtime sys-
tems. We give an overview of their most relevant details.

A. Memory Vulnerability
The architectural vulnerability factor (AVF) [23] is com-

monly used to estimate the priority of protecting different
bits in the state of a computer system. While it seems a
natural fit for guiding ECC protection, it is in fact not well
suited for memory. This metric is defined for every state
bit as the fraction of cycles in which the bit matters, i.e.
the cycles at which changing the bit to a different value
would result in a different outcome – either crashing the
system or causing incorrect results to be computed.

However, due to ECC, the outcome of a program exe-
cution is never affected by a single bit in memory. Several
erroneous bits are required to cause an error, and com-
puting the joint AVF of several bits requires simulating
complex models [33]. Furthermore, uncorrected errors in
the same ECC word as accessed bits may cause crashes –
even when the bits accessed are not erroneous themselves.
Therefore, the most appropriate metric to quantify the
vulnerability of an ECC word stored in memory is the
vulnerability factor induced only by the memory accesses
to this word [11, 15]. While other proposals aim to build on
or replace single-bit AVF with metrics based on memory
access counts [10, 36], all these existing approaches rely on
offline profiling or simulating.

timeCPU ST LD ST LD ST LD LD

memory

Fig. 1. Vulnerability timeline for a memory location.
Stores (ST) to a memory location overwrite the data it contains,
while loads (LD) retrieve it. Time is safe before a store (in hatched
green), and vulnerable before a load (in solid red): the first fault
(shown as a black lightning bolt) has no effect, while the second
affects the next 2 loads.

This paper focuses on the vulnerability in memory
induced by memory accesses [11, 15], to which we refer
simply as vulnerability in the rest of this paper. For every
ECC word in memory, cycles are categorised as either
safe or vulnerable, depending on the next memory access
to this word: cycles preceding a load are vulnerable, and
cycles preceding a store are safe. Figure 1 illustrates these
categories by depicting vulnerable cycles in solid red, and
safe cycles in hatched green. Formally, vulnerability is
V = vulnerable cycles

(safe cycles+vulnerable cycles) . Visually, the vulnerability
of a memory location is the fraction of the full timeline
that is coloured in solid red in Figure 1.
Vulnerability can be defined for any data granularity

that is a multiple of an ECC codeword however, and
we will also consider the row-level vulnerability, which is
defined for a DRAM row. In this case, a cycle is classified
as vulnerable if any codeword in the row is next accessed
by a load. In other words, a cycle is safe for row-level
vulnerability only if every codeword stored in a DRAM
row will be overwritten (or remain unused).

B. Variable Strength ECC Schemes
Differences in memory vulnerability allow adjusting

ECC protection accordingly, given an ECC scheme with
different protection levels. However, industry standard
ECC schemes provide uniform protection only, due to their
layout in DRAM.
DRAM modules are organised in ranks, which consist of

sets of chips accessed simultaneously, each contributing a
number of bits to the rank’s output [12]. To tolerate errors
in main memory, vendors provide DRAM modules with
additional storage, by adding more chips to a rank. This
widened rank typically accesses 72 bits simultaneously
instead of 64, and the additional storage can be used to
store the ECC’s check bits. State of the art protection in
supercomputers is ChipKill [8], which tolerates up to a
full chip failure. A stronger alternative, also uniform, is
Double ChipKill, which can tolerate 2 full chip failures, at
the price of a much wider rank obtained by operating 2
channels in lockstep [34].
Variable strength ECC schemes have been proposed for

DRAM. They allow increasing error protection for some
parts of memory without uniformly increasing the ECC
cost, however always without dynamic tuning strategies.
Virtualized ECC (VECC) [35] stores a second level of ECC
protection in addressable memory, while using a first tier
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Fig. 2. Vulnerability Modelling and Protection Selection

ECC code stored at the rank-level, identically to uniform
ECC schemes. In this configuration, VECC’s first tier is
used to detect errors, and both tiers of redundancy are
used to correct detected errors. Similarly to VECC, Odd-
ECC [16] offers two levels of protection, however with a
fixed pre-defined arrangement in memory of 256KB pages.

Variable strength ECC schemes have also been devised
for caches [2, 27] and NAND memories [37]. Those ECC
schemes could be guided by our memory vulnerability es-
timation methodology, and replace VECC, provided they
are extended for DRAM. Furthermore, most of these pro-
posals focus on adjusting the ECC protection to hardware
variability, while our work adapts to memory usage.

C. Task-based Programming Models
Several new programming models have been proposed

to reduce the complexity of programming current and
future HPC infrastructures, such as task-based dataflow
programming models [3, 9, 18, 25]. In these models, the
programmer subdivides a program’s workload in tasks,
and expresses the flow of data between these tasks. The
runtime system then orchestrates the parallel execution of
the program on the available hardware resources such as
CPU cores, GPUs, etc., while honouring the constraints
expressed by the flow of data.

In the OpenMP Tasks programming model, the flow
of data between tasks is expressed by pragma annota-
tions that declare which data each task is going to ac-
cess [25]. These annotations also specify whether tasks
access data dependencies as input, output, or both. For ex-
ample the annotation pragma omp depend(in: a, out:
b, inout: c) declares that the corresponding task will
consume data a, produce data b, and both consume and
produce data c. This information is necessary for the
runtime system to correctly compute the ordering of tasks:
two tasks accessing the same data as read-only may do so
simultaneously, whereas if one task produces and another
consumes the same data, their ordering must be enforced.
In this way, the runtime system builds the task dependency
graph, where each node of the graph is a task, and each
edge represents a dataflow dependency.

III. Overview of Runtime-Guided ECC
To enable guiding adaptable ECC protection dynami-

cally, we must be able to estimate vulnerability and use
this information for ECC decisions as soon as possible
during the execution of a program. We illustrate the steps
of this process and how they interact in Figure 2.

From the vulnerability estimation, detailed in Sec-
tion IV, we select memory regions for stronger ECC

protection at the granularity of a memory page. Intu-
itively, the more memory is protected with stronger ECC,
the higher the overhead. This overhead comes in terms
of memory storage, LLC occupancy, and DRAM write
requests, that are dedicated to the supplementary ECC
symbols, as detailed in Section V. Thus, we select the
amount of memory that is protected as the parameter for
the redundancy-reliability trade-off. Given the fraction of
protected memory, we select for protection the most vul-
nerable memory pages according to our model predictions.
By prioritising these pages, the runtime system optimises
the reliability of the program’s execution under redun-
dancy constraint. This means that the correct ordering
of vulnerability model values within a benchmark is of
particular importance to guide ECC protection.
Our vulnerability model is designed for online use, by

keeping the model as simple and lightweight as possible
and by relying only on data available at the runtime. This
is in contrast to the evaluation of the model and of its
impact, presented in Section VII, that relies on complex
simulator infrastructures and takes into account all the
effects ignored by the model.
Specifically, the simplicity of the model relies on the

entire modelling being done with a single traversal of the
task dependency graph, and representing the vulnerability
for each memory region using only 2 floating-point values.
Therefore, vulnerability can be estimated by the runtime
system as soon as the task graph is known. In fact, the
runtime system may even update the vulnerability model
incrementally with each new task creation. Our method-
ology also enables taking different protection decisions for
different time intervals of the program execution time.
In practice however, we take protection decisions once
only for the whole execution time of each program, and
before its execution, to limit the scope of this proposal
to modelling vulnerability and evaluating the quality of
guiding ECC using this model.

IV. Modelling Vulnerability from the Task
Dependency Graph

The information required to compute the vulnerability
is the timing of memory accesses for each location in
memory. Figure 3 presents an overview of the vulnerability
model, and what data is required for each of its parts.

A. Information Available to the Runtime System
As soon as a program starts executing and creates the

tasks it intends to run, the runtime system has access to
the task dependency graph, represented in Figure 3. Tasks
are numbered 1 to 5 and dependencies a to d, and are
respectively depicted as nodes and edges in the task graph.
With a simple graph traversal and knowledge of the task
execution times, the runtime can predict the scheduling of
tasks on the available computing units (3 in this example).
This scheduling is represented on the right-hand side of
Figure 3, and it allows the runtime system to predict
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Fig. 3. Vulnerability Modelling
The different steps in vulnerability modelling, displayed in the boxes
on the right, only require the information shown on the left side.

the time at which dependencies will be accessed. This is
illustrated by the arrows beneath the scheduling represen-
tation, which show for each dependency the interval of
time during which they may be accessed.

While many benchmarks have rather uniform task ex-
ecution times, this is not true in the general case. The
execution time of tasks is, however, rather uniform across
instances of the same task type, i.e. tasks that execute
the same code but with different inputs and outputs.
Therefore, we model the task durations with a single value
per task type, that can be obtained by the runtime system
as the duration of the first instance of that type.

B. Additional Model Assumptions
The task graph analysis only provides us with intervals

of time during which each dependency may be written
and/or read. Further information that is not readily avail-
able to the runtime system is required to predict memory
access patterns exactly. In particular, the memory access
patterns of each task and how they are affected by caching.
In the interest of maintaining the model lightweight
enough to be used online, we replace expensive profiling
by a number of assumptions. Our evaluation shows that
these assumptions are sufficient to guarantee a satisfying
accuracy with respect to the ordering of memory pages
per vulnerability within each benchmark, as presented in
detail in Section VII.

Together with the predicted scheduling, knowing how
data is accessed within each task would give the runtime
system the full picture of the program’s memory access
patterns. Instead, we model all tasks in the same way: we
suppose each task accesses all of its data linearly over its
execution. That is, if an array a of 100 elements is accessed
as input by a task, the task will start by accessing a[0],
access a[50] roughly half way through its execution time,
and end by accessing a[99]. With this assumption, we can
predict from the task scheduling exactly how much time
elapses between two accesses to any memory location.

The effects of caching on how main memory perceives
a program’s memory access patterns have been modelled
precisely by Yu et al. [36]. Their model exploits data
like working set size or cache capacity, as well as data

CPU

memory

cache

timeLD ST LDtimeLD ST LDtimeLD LDLD
(a) (b) (c)

write-backwrite-through

Fig. 4. Difference between vulnerability at memory level, and the
value computed from memory accesses
At memory and CPU level we represent in hatched green the safe
time, and in solid red the vulnerable time. The boxes at cache level
represent the time that the considered data resides in cache: in
white, clean, and in black, modified. In the first scenario, the data
is not modified, while in the second it is directly written through to
memory. In the last scenario, the modified data needs to be written
back to memory. All scenarios show either more vulnerable time at
CPU level, or more safe time at memory level.

that is not available to the runtime system, such as the
precise memory access pattern information (element size,
access stride, etc.). Additionally, this model is expensive to
compute, and caching effects can only significantly affect
vulnerability for data structures that are smaller than the
caches. Instead, we conservatively estimate vulnerability
from the times at which memory accesses are issued, setting
aside caching effects for future work.
We illustrate in Figure 4 the fact that vulnerability,

when computed from the CPU perspective ignoring any
caching effects, is an upper bound of the vulnerability
in memory. This figure displays the vulnerability at the
memory and CPU levels and the time data spends in
cache, based on loads and stores. Whether fetched lines
are not modified, modified with immediate or with delayed
writing to memory, the data is always rated vulnerable
for a longer period than it is vulnerable in memory. The
difference between vulnerable time measured at CPU and
memory levels is at most the duration for which the data
resides in the cache hierarchy.
Owing to the simplicity of our model, the vulnerability

of each data dependency can be entirely represented using
only two vulnerability values. All vulnerability values in
a data dependency can be interpolated linearly from the
first and last values in this range. This is illustrated at the
bottom of Figure 3, where the vulnerable time of the array
a is depicted by the red trapezoidal area. In the model, this
information is represented by the two values 80% and 60%.
The first (respectively last) address in a is accessed at the
start (resp. end) of tasks 3 and 5. Vulnerable time for this
location is displayed as the fraction of red at the bottom
(resp. top) of the graph, and represents 80% (resp. 60%)
of the total time.

C. Vulnerability Distribution
The vulnerability predictions from our model can be

compared against exact vulnerability values, measured us-
ing the multicore simulator setup described in Section VI.
While more details are presented in Section VII-A, we
already show in Figure 5 (a) the distributions of mea-
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Fig. 5. Vulnerability distribution and average model error

sured vulnerability across the different benchmarks’ mem-
ory footprints. For each memory page, we compute the
average vulnerability value over the whole execution time,
and report the distribution of these values per benchmark
as box plots. The first and last quartiles of vulnerability
values are displayed as whiskers, the two middle quartiles
with a box, and the median is represented by a thick
line. Figure 5 (a) reveals a wide variety of vulnerability
distributions across the various benchmarks: some with
high averages such as CG, some with lower averages such
as KNN, some with very spread-out values such as FFT,
or on the contrary grouped together such as PRK2.

In Figure 5 (b), we plot the average error of our mod-
elling methodology. Each value is computed by averaging
the absolute differences between predicted and measured
vulnerability values, for each memory page in each bench-
mark. The differences are reported in percentage points
(p.p.), which represent the difference between the two
vulnerability values as percentages.1 The graph reveals
that all benchmarks except KNN have an average error
of less than 10 p.p., and the average error is of 6.91 p.p.,
meaning that our model is very accurate. In the case of
KNN the error is close to 27 p.p., because one of our
simplifying assumptions is not met: this benchmark’s tasks
access all of their input data immediately and repeatedly
over their execution time. While this causes a relatively
high average error, it does not perturb the relative ordering
of vulnerability per memory page, which means that the
model’s choice of which pages to protect with stronger
ECC is correct, as detailed in Section VII.

We do not observe significant accumulation of estima-
tion errors over program execution time in any benchmark
used, however we expect such effects might occur for
very deep task graphs. This can in turn be counteracted
easily thanks to the light weight of the model, simply by
repeating the analysis periodically and limiting it to the
upcoming section of the task graph.

V. VECC as a Dynamically Adaptable ECC
Using our modelled vulnerability, we can now select

memory pages for increased protection at execution time.
This requires a vulnerability threshold, and a two-tier

1For example, a prediction of 55% vulnerability for a memory page
measured at 50% is an error of 5 p.p., but a 10% relative error.

ECC scheme that allows protection to be adjusted. Given a
desired fraction of memory pages to protect, the threshold
is simply the corresponding quantile in the distribution of
predicted vulnerability values.
For the two-tier ECC scheme, we use VECC [35],

which is the most appropriate of the several existing two-
tier ECC schemes for dynamically adjusting protection
at runtime. Its two-level organisation with a ChipKill
baseline allows protecting with at least this state-of-the-
art technique the whole memory of an application, without
additional overhead. The second tier of redundancy is
stored in addressable memory, and can be applied only
to those parts of memory deemed most vulnerable.
Furthermore, protection is decided at the granularity

of a memory page, rather than fixed 256KB blocks as in
Odd-ECC [16]. VECC’s organisation allows fully flexible
mappings per memory page at very low overhead, by
proposing a translation from physical addresses to second
tier ECC addresses, with an ECC address translation
cache that is maintained with each core’s TLB. Because
VECC changes the way ECC information is stored and
accessed, it requires specific hardware support beyond its
translation cache – for example, ECC codecs that can
decode larger words. Since this support is not currently
available, our performance evaluation is limited to simu-
lator infrastructures.
Finally, VECC relies on a Reed-Solomon code [28], as

multiple ChipKill implementations do [1]. This means
that the protection for a memory page can be changed
without modifying the baseline redundancy: both code-
words (with and without second-tier) are in fact the
same larger codeword, shortened to a different number
of symbols. Therefore, downgrading the ECC protection
is done without overhead, by simply updating the page-
table entry and freeing the tier 2 storage. Upgrading the
protection of a memory page requires streaming the page’s
contents to compute the tier 2 symbols, storing them in
newly allocated addressable memory, and updating the
page-table entry.
As VECC’s first redundancy tier is used for error detec-

tion, the second tier only needs to be fetched on memory
loads in the rare cases that the first level decoding finds
errors. On stores however, the second tier redundancy
needs to be updated. Since this second tier is stored in
addressable memory, Yoon et al. propose caching it in
the LLC to limit the increase in ECC update traffic [35].
Furthermore, metadata in cache lines can be used to
indicate missing second-tier redundancy, to avoid fetching
tier 2 data in cache. In practice, this means that whenever
data that has second tier protection reaches the LLC in a
modified state, the LLC performs the following operations:

1) Check whether the second-tier ECC corresponding
to this data is present in the cache.

2) If not, allocate a new cache line for the second-tier
ECC, initially marked entirely as invalid.
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Fig. 6. Experimental frameworks
This Figure displays the flow of data between the proposed method-
ologies (shown in ovals) and experimental frameworks (in rectangles)
to evaluate the reliability and cost of guiding VECC at Runtime.

3) Update the second-tier ECC in cache, and mark this
data in the cache line as valid and dirty.

VI. Methodology
A number of different frameworks are needed to evaluate

all of the aspects of this dynamic ECC proposal. These
frameworks are summed up in Figure 6. For all evalua-
tions, we use the 9 parallel benchmarks listed in Table I.

We measure the precision of the proposed vulnerability
model and the performance impact of adjusting ECC
at runtime, with Framework A© : the parallel simulator,
which will be described in Section VI-A. We also assess
the effects on reliability of our dynamic ECC strategy,
and this evaluation is subdivided in two parts. First, we
evaluate the experimental risk of failure due to errors in
each benchmark’s memory, for which we use Framework B©
, presented in Section VI-B. These probabilities of failures
can then be used as inputs in a monte-carlo simulator
that performs lifetime simulations of entire DIMMs in
Framework C© , detailed in Section VI-C.
We explore the various available trade-offs by con-

sidering all 9 deciles of vulnerability values. For every
run, we select a protection level, which is the number of
most vulnerable deciles of memory pages to protect. This
protection level then impacts how errors encountered will
be corrected by the ECC and how the program accesses
data, specifically with respect to updating with every write
to memory pages that are selected for stronger protection.

A. Framework A© : Architectural Simulator
We use a cycle-based simulator, TaskSim [29, 30], to

simulate the performance of benchmarks with various
VECC protection levels and to compute the exact memory
vulnerability ratings. TaskSim is a task-trace based infras-
tructure that relies on task-based programming models to
generate traces of each task, recording the basic blocks
and memory addresses accessed. These are then replayed

TABLE I
Benchmarks used for evaluation

Benchmark Description Input Size
B-S Black-Scholes Option Pricing

(Partial differential equation)
8M options

CG Conjugate Gradient
(Sparse linear algebra)

3D Poisson equa-
tion, 2M×2M elts.

Chol. Cholesky factorisation
(Dense linear algebra)

8K×8K SPD ma-
trix

MM Double-precision general Matrix
Multiply (Dense linear algebra)

4K×4K matrices

FFT Stockham Fast Fourier Transform
(Spectral method)

16M elements,
1 dimension

SMI Invert Symmetric Matrix
(Dense linear algebra)

8K×8K SPD ma-
trix

KNN K-Nearest Neighbours
(Machine learning)

1M points training,
1k testing sets

PRK2 Parallel Research Kernels sten-
cil [32] (Stencil operation)

16K×16K grid,
10 iterations

Str. Stream Triad [19]
(Memory bandwidth benchmark)

192MB:
8M doubles arrays

in a multicore architecture simulator with a simple core
model and a full cache hierarchy, using a real runtime
system to schedule the tasks onto the simulated cores.
The memory controller is simulated using Ramulator [14],
and the DRAM power consumption is computed from the
DRAM command traces that Ramulator generates using
DRAMPower [7].
To compute the vulnerability at the memory level, we

record all loads and stores at the memory access granular-
ity and the time at which they reach main memory. From
this data, we compute the vulnerability for every 64B word
in memory, and report the average values per memory
page. We also extend TaskSim to protect selected memory
pages with VECC which consists simply of allocating
memory for second tier symbols and keeping these second-
tier VECC symbols’ up to date at the LLC level, as
explained in Section V.
We trace applications on an Intel x86_64 Xeon Plat-

inum 8160 and simulate a multicore architecture whose
configuration mirrors the Xeon Platinum 8160 character-
istics with 8 cores and a proportionally scaled LLC. The
cores run one thread each, at 2.1GHz, and each with a
reorder buffer of 224 entries. The memory hierarchy pa-
rameters are summarised in Table II. All cache levels have
64B lines, are write-back and write-allocate, and are non
inclusive. Memory pages are 16KB in size. Ramulator and
DRAMPower simulate DDR4 DRAM memory with ranks
constituted of 8Gb x4 chips clocked at 3200MHz, with
the parameters reported for MICRON’s DDR4 SDRAM
MT40A2G4xx-062E [22]. For the ChipKill baseline and
for VECC, we use 2 channels composed of one 18-chip rank
each, thus 72 bits wide. Double ChipKill uses 2 channels
in lockstep to provide a channel with a 144 bits wide data
path. We simulate this in Ramulator by using 1 single-
rank channel of 36 chips. Both configurations use 36 chips
and 32GB of addressable memory.
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TABLE II
TaskSim cache parameters

MSHR stands for miss status handling register.
cache shared assoc. size latency MSHRs
L1D private 8-way 32kB 4 cycles 16
L2 private 16-way 1MB 13 cycles 16
L3 shared 16-way 11MB 68 cycles 32

time

target wakeup

signal handler

~200µs ~30ms
effective error injection time

samplesignal to thread
increment ato-
mic counter

first sample after
effective injection

recording mem-
ory accesses

Fig. 7. Error injection framework
The effective error injection time is the moment when all threads have
started recording samples. The first subsequent sample determines
the error injection outcome.

B. Framework B© : Error Injection Methodology
The objective of our error injection methodology is to

evaluate how the runtime-guided VECC decisions impact
the lifetime reliability of real systems. To this end, we want
to concretely implement the modalities of failures due to
errors in memory. In real systems, data is fetched from
memory with the redundant information that, together,
constitute a codeword. Based on the number and location
faults in the codeword, the ECC decoding may succeed,
and return the correct data, or fail.

Our error injection experiments quantify the risk of
application failure, in the case of an ECC decoding failure.
That is, we want to measure as precisely as possible the
risk of consuming an uncorrected error (UE). We there-
fore perform error injections in native runs on the same
real system as the one used for tracing and simulating
in Section VI-A. Each experiment consists of selecting
at random a memory address in the program’s memory
footprint and a time in the program’s execution, which are
the location and moment where the UE appears. We then
measure how this data location is accessed after this point
in time. If the data is not accessed or it is overwritten, we
consider the UE as tolerated, whereas if the erroneous data
is consumed by the application, the error is considered
to cause a failure. Considering the next access to data
is the only correct way to measure the worst-case risk
of consuming an UE. Indeed, any data may have to be
fetched from memory even if it is expected to be cached
at that moment, due to, e.g., an unexpected eviction.

The mechanism of these error injections relies on precise
event-based sampling (PEBS), and is depicted in Figure 7.
Using operating system mechanisms such as signal han-
dlers, we wait for the selected random amount of time and
then record the memory accesses to the targeted memory
address. After the end of the program’s execution, we parse

the list of recorded memory accesses and the time at which
they occurred according to the high-resolution hardware
clock. As illustrated in Figure 7, we consider the first
sample after the effective error injection time, and define
whether the error was consumed or tolerated based on this
memory access.
We have performed over 30000 error injections per

benchmark, in order to obtain for each of the 10 runtime-
decided vulnerability categories the probability of consum-
ing an UE with small confidence intervals (less than ±2.5%
with 99% confidence).

C. Framework C© : Monte-Carlo Fault Simulator
The third and last framework is used to compute the

lifetime reliability of DIMMs. Computing this lifetime
reliability analytically would be extremely complex, as the
distribution of faults is long-tailed, in particular a Pareto
distribution [20], and failures are never caused by a single
fault, but by a number of faults intersecting in a single
codeword. Therefore, we rely instead on FaultSim [24],
which assesses reliability via Monte-Carlo simulations.
For each ECC and workload configuration, we run 1M of

FaultSim simulations, each corresponding to the lifetime
of a single DIMM. The DIMMs have the same charac-
teristics as used in Ramulator in Section VI-A. In each
simulation, FaultSim injects the various types of possible
hardware faults randomly, with exponential rates taken
from Sridharan et al. [31] scaled by 10×. For every fault
injection, the simulator then considers whether its physical
location affects the same codewords as other faults, and
for every intersection of faults the simulator determines if
the decoding succeeds. The simulator continues simulating
until it encounters an uncorrected error or reaches the end
of the DIMM lifetime, which we have set to 7 years.
We first extend FaultSim to take into account

application-level error tolerance. Given a physical location
of an uncorrected error, we want to determine whether the
program can tolerate this error. For errors that have a size
of less than a single ECC word, we use the probabilities
of consuming uncorrected errors obtained from the error
injection experiments presented in Section VI-B. However,
larger errors may appear in DRAM: a full DRAM row,
column, bank, or rank, may fail at once. In the case of
fault intersections that span full DRAM columns, banks,
or ranks, we always consider the application-level tolerance
to fail. Indeed, data in a single DRAM row may correspond
to a small number of DRAM pages (16KB in the system
we simulate), however separate rows have a very low
likelihood of containing related data. This means that if P
is the probability of tolerating a word failure (respectively
a row failure), the probability of tolerating a full columns
(resp. bank) failure is P rows, thus negligible with a high
number of rows (128K per bank in our system).
The last error granularity to consider is a DRAM row

error, which corresponds to a memory page with our
16KB pages. The probability that a full memory page
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Fig. 8. Distribution per memory page of modelled vulnerability, and exact vulnerability obtained by simulation
Each graph displays the vulnerabilities over the memory footprint of a benchmark, with pages sorted by their virtual addresses.

error can be tolerated by a program is not necessarily
0. Furthermore, it can not be easily determined from the
ECC word failure probability, as words in the same page
can not be considered to be always accessed independently
(nor always accessed together). Therefore, we use the
vulnerability computed at a DRAM row granularity as the
probability of consuming a row error. That is, we compute
for every DRAM row, using the simulator framework A©
described in Section VI-A, the average fraction of time
that any value in the row has a load as its next access.
This is different from (and always higher than) the average
vulnerability of the ECC words in the row.

Finally, we extend FaultSim to implement VECC, which
has the same ECC layout and software-level error toler-
ance as ChipKill, except for errors that affect exactly 2
chips in the same ECC codeword. These errors can not be
corrected by ChipKill, but can be corrected using the sec-
ond tier ECC, if present. In this case, we draw at random
whether the virtual page mapped at the error’s physical
location is selected for 2-tier protection, based on the
selected fraction of protected memory. If so, we consider
the error corrected. Otherwise, we apply the probability of
tolerating this error at the software level. For non-random
selections of 2-tier protected memory pages, we now have
to consider the conditional probability of consuming an
error knowing that this memory page is not selected.
Thus combining together TaskSim, FaultSim, and error

injections in native runs, we are able to provide a reliability
evaluation of guiding VECC protection at runtime.

VII. Evaluation
A. Vulnerability Model Accuracy

The distribution of vulnerability across benchmarks has
been presented at a high level in Section IV-C. Here, we
take a more detailed look at the vulnerability values of
the memory pages in each benchmark, and the differences
between these values and our model’s previsions. These

are presented in Figure 8, with pages ordered by their
virtual addresses, thus in an order that maintains data
structures contiguity and allows discussing application-
level behaviour. We present the full memory footprint
for all benchmarks, except DGEMM where we only show
the 250MB-300MB range of its 415MB memory footprint.
DGEMM has a high variability in vulnerability values of
address ranges that are next to each other, and the full
range is thus too noisy to display in full.
Vulnerability values exhibit spatial locality, with neigh-

bouring addresses grouped in ranges of similar vulnerabil-
ity values. Such ranges have either the same vulnerability
value, such as the 8 blocks of about 48MB in KNN, or
neighbouring values that monotonically increase over the
block, such as the 24 blocks that can be distinguished
in Stream’s vulnerability profile. This first observation
validates our choice to store the vulnerability of a depen-
dency with only 2 values. Both constant and monotonous
ranges of values can indeed be precisely represented by
the first and last value in the range, interpolating linearly
the values in between. This locality is due to the fact that
neighbouring addresses correspond to contiguous memory
pages in the application virtual address space, and thus
pages in the same data structure.
For example, the matrix in CG corresponds to close to

90% of the memory footprint, and occupies the highest
addresses. In Stream, we have 3 arrays that are each
subdivided into 8 dependencies. Both Cholesky and SMI
handle non-sparse symmetric positive definite matrices,
split into 64 blocks of equal size. As can be seen in both
profiles, 36 of these blocks have non-zero vulnerabilities,
while 28 are always zero, which is due to the fact that
the matrices are symmetric. Both algorithms only access
the blocks on and above the matrix diagonal, as the
blocks below the diagonal are simply a transpose of the
blocks above the diagonal. Only FFT displays a very noisy
vulnerability profile in most of its memory footprint. This
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stems from its memory access pattern, which accesses
arrays with a different stride at every iteration.

The comparison of these memory page vulnerability val-
ues with the model predictions highlights that the model
has high accuracy. In particular, the most visible modelling
errors on Figure 8 are on the boundaries of application-
level structures. This is the case for all the erroneous
predictions in DGEMM and PRK2 Stencil. These errors
are in fact only artefacts, due to application-level data
structures not being aligned on memory page boundaries.
On the 5 most accurately modelled benchmarks, Black-
Scholes, CG, DGEMM, PRK2 Stencil, and Stream, 98% of
memory pages have errors of less than 7.31 p.p., and 90%
of pages have errors less than 3.34 p.p. This means that
our very simple model is able to determine how memory
is used for a huge majority of the memory pages in these
benchmarks. Significant mispredictions happen for KNN,
where the assumption that tasks access their dependencies
linearly over their execution time is not met, causing a
step-like vulnerability profile. However, the ordering of all
12079 memory pages in KNN is exactly the same between
vulnerability predictions and exactly measured vulnera-
bility values. Therefore, our model prioritises exactly the
same pages for protection than the simulation.

Further mispredictions happen for FFT, Cholesky and
SMI, as 25% of memory pages have an error of at least
15 p.p. in each of these benchmarks. For Cholesky and
SMI, these imprecisions are mostly due to less structured
parallelism, and thus more variability in task execution
times, which does not significantly alter the ordering of
memory pages. The memory page selections made using
the model and exact vulnerability differ by at most 2.77%
for Cholesky, and 3.71% for SMI. For FFT, the predictions
exhibit coarser spatial locality than the exact vulnerability
values. This is again due to FFT’s strided memory access
pattern, causing a very noisy vulnerability profile that the
model can not predict correctly. The ordering of memory
pages is correctly predicted outside of the 120MB most
vulnerable FFT data, which represents 18% of the memory
footprint. Within these most vulnerable memory regions,
the model wrongly prioritises up to 22% of the pages for
protection, whereas this difference is at most 0.62% when
protecting more than 18% of memory with tier 2 ECC.
However, memory pages that are wrongly prioritised only
affect reliability if they replace pages with significantly
higher vulnerability. Therefore, the ordering errors in most
vulnerable FFT pages have little impact, as all those pages
have a similar (over 91%) vulnerability.

B. Reliability Effect of Runtime-Guided VECC
Figure 9 presents our reliability evaluation as the prob-

ability of having a DIMM fail in its lifetime, for all
benchmarks and all considered protection strategies. Hori-
zontal lines represent the uniform ECCs: ChipKill and the
stronger Double ChipKill. The remaining lines represent
VECC, each with a different strategy for selecting memory

pages for tier 2 protection, where the x axis represents
the fraction of 2-tier protected memory pages. The Oracle
strategy selects memory pages to protect offline using
the vulnerability numbers from the tracing and architec-
tural simulating infrastructure, while the Random strategy
selects pages at random. The Runtime-Guided strategy,
detailed in Section V, makes its protection decisions based
on the vulnerability model evaluated in Section VII-A.
The random strategy’s reliability gains exhibit a linear

decrease in DIMM failure probability as more of the ap-
plication’s footprint is protected. With 0% of the memory
protected, the failure probability of VECC is the same as
ChipKill, and with close to 100% it is approaching but a
little higher than Double ChipKill. This is due to guiding
VECC at the page level, as protecting all of memory with
VECC uniformly would have a similar failure rate to Dou-
ble ChipKill. However, due to the large number of inde-
pendent memory pages mapped in a single column (128K
in our system), the chances of tolerating full column or
bank errors affecting 2 chips remains very small, even when
we approach 100% coverage. For example, when VECC
covers 99.9% of memory pages, a single column error has
a 0.999131072 ≈ 10−57 chance of affecting only protected
pages. Therefore, our methodology never covers these full-
column 2-chip errors, as explained in Section VI-C. These
rare events cause the difference between guided VECC and
Double ChipKill.
The Oracle and Runtime-Guided VECC strategies both

have lower failure probabilities than the Random strategy
for most benchmarks, and similar probabilities otherwise.
Furthermore, the Runtime-Guided tracks the Oracle reli-
ability results very closely. The point with most difference
between both strategies is for FFT with 10% coverage,
where the Oracle strategy achieves a failure rate of 1.69%
against a 1.72% for the Runtime-Guided strategy. This
0.03 p.p. gap represents a 1.92% difference. The Ora-
cle outperforms the Random strategy by selecting which
memory pages to protect in priority using the vulner-
ability metric designed for ECC memory. Our runtime-
guided strategy is able to perform nearly the same optimal
choices, thanks to the precision of its vulnerability model.
In SMI and Cholesky, the Oracle and Runtime-Guided

strategies both identify that the last pages to protect are
those with the unused matrix blocks, thereby reaching the
optimal reliability level with only 56% of memory covered.
Furthermore, the performance of both non-random VECC
strategies is correlated with the variety in vulnerabil-
ity values as shown on the profiles in Figure 8. KNN,
DGEMM, Cholesky, and SMI all exhibit a wide range of
vulnerability values, and have the greatest decreases in
failure rates with respect to the Random strategy, ranging
from 0.19 p.p. to 0.29 p.p. This represents a 15% to 25%
reduction in failure rate. For Black-Scholes, CG, Stream,
and FFT the highest failure rate reductions range from
5% to 7%, while for PRK2, the benchmark with the most
grouped vulnerability values, the benefit of a runtime-
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guided strategy is at most a 3% lower failure rate than
the random strategy.

The main takeaways are that differences in vulnerabil-
ity between different parts of memory allow interesting
redundancy-reliability trade-offs to be exploited, and that
our runtime technique identifies these trade-offs as well as
expensive architectural simulation analysis.

C. Overheads of Runtime-Guided VECC
The energy cost of each ECC scheme with respect

to ChipKill is presented in Figure 10. The average cost
of applying VECC progresses linearly with the fraction
of memory protected, and remains below 1.06× that of
ChipKill. The stronger uniform Double ChipKill ECC
is much more costly, consuming 1.49× the energy of
ChipKill. This means that upgrading from ChipKill to
Double ChipKill requires at least 4 times more additional
energy than upgrading to VECC. This is because Double
ChipKill always activates twice more chips on every access
than ChipKill, which makes every memory access more
expensive. Secondly, due to its different organisation, there

is also much less memory parallelism available. This has an
especially high impact on the execution time of memory-
bound benchmarks. For CG, FFT, and Stream, Double
ChipKill consumes between 1.80× and 1.90× more energy
than ChipKill, while VECC stays below 1.15×.
Furthermore, on benchmarks where read-only data is

prioritised for protection first, the cost of VECC remains
small at first. In CG for example, the matrix is protected
first, and the energy cost of VECC is 1.05× that of
ChipKill when protecting 80% of the footprint. When
the last 20% of memory is protected with tier-2 ECC
as well, the energy cost increases faster, up to 1.12×.
This is because this portion of CG memory contains the
vectors, and the cost of VECC is mainly driven by stores
to protected data.
Finally, we present in Figure 11 a number of perfor-

mance indicators averaged over all the benchmarks. The
miss rate of second tier redundancy at the LLC level (LLC
VECC misses) remains relatively constant on average,
between 2% and 3%. The other metrics, which are the
fraction of LLC occupied by tier-2 redundancy (LLC
occupancy), and the increase in memory requests and
execution time with respect to ChipKill, increase roughly
linearly with the fraction of memory that is protected. The
average increase in execution time is much less for VECC
than for Double ChipKill, due to channel-level parallelism.
Indeed, Double ChipKill operates 2 channels in lockstep,
whereas ChipKill and VECC can operate these 2 DRAM
channels independently. For CG, Double ChipKill incurs a
1.81× slowdown against a maximum of 1.11× for VECC.
Stream exhibits the worst-case cost of VECC, as it writes
to all of its memory footprint at every iteration, with up
to 1.15× slowdown, versus 1.70× for Double ChipKill,
On the other extreme, Black-Scholes only incurs up to
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1.005× slowdowns for VECC, against 1.014× with Double
ChipKill.

All in all, using VECC is cheaper than Double ChipKill
on all cost and performance metrics, while approaching
similar reliability. Guiding VECC can be done online by
modelling key memory statistics such as vulnerability,
thereby identifying the best reliability-cost trade-offs that
are achievable with VECC. Runtime-guided VECC makes
the most of the runtime-guidance when protecting around
50% of memory, as this configuration has the highest
average reliability gap with the randomly guided VECC.
This configuration also sees runtime-guided VECC achieve
a significant reliability improvement with 31% reduction
of failure rate (from 1.84% down to 1.26%), while limit-
ing both the average performance slowdown and energy
increase to 1.02× and 1.03× respectively.

VIII. Conclusion
In this paper we present a methodology to estimate

memory vulnerability online and to guide a dynami-
cally adaptable ECC scheme, in order to adjust memory
protection accordingly. The runtime modelling is very
lightweight, and relies entirely on information to which
the runtime system already has access. Furthermore, this
modelling gives a faithful picture of the vulnerability in
memory down to the memory page level with less than 7
percentage points difference on average.

Guiding the dynamically adaptable Virtualized ECC
scheme [35] with the runtime’s vulnerability estimation
shows that it can achieve a variety of high-quality trade-
offs between reliability and overhead, as this technique
performs as well as an oracle that uses an offline analysis
built on tracing and detailed architectural simulation. Our
holistic evaluation of the lifetime reliability of DIMMs also
shows that this VECC strategy can approach the reliabil-
ity of the stronger uniform Double ChipKill ECC with
much lower performance degradation and energy cost.

Our proposed runtime vulnerability methodology can
be extended in various ways, either repurposed (for e.g.
guiding data placement or optimising DRAM refreshes),
or expanded with a more complex model of memory
access patterns. For example, the assumption that all
tasks operate linearly on their inputs could be replaced
by compiler-detected access patterns, or by using random
sampling of memory accesses to accept and reject task
behaviour models.
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