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Abstract—Modular addition is a widely used operation in
Residue Number System applications. Specific sets of moduli
allow fast RNS operations such as binary conversions and
multiplications. Most of them use modulo 2n − 1 and 2n + 1
additions. This paper presents four fast and small architectures
for these specific moduli targeting modern FPGAs with fast carry
chains. The use of this arithmetic dedicated feature allows fast
and small modular adders. Our modulo 2n − 1 adders have a
single zero representation. Our modulo 2n+1 adders are designed
for binary and diminished-one representation with and without
zero value management.

Index Terms—Modular adder, carry-chain, FPGA, RNS, 2n−1
and 2n + 1 moduli

I. INTRODUCTION

Modular operations are widely used in several fields such as
residue number systems (RNS) and cryptographic applications.
It is possible to enhance RNS computations by using the
specific moduli 2n − 1 and 2n + 1. The RNS arithmetic
operations and RNS to binary converters on specific modular
bases make a large use of arithmetic operators for specific
moduli [1], [2].

Several efficient architectures for modular multiplications
have been proposed for FPGA [3], [4], [5]. Less work has
been made in order to improve modular additions [6] whereas
several VLSI architectures for specific moduli have been
published [7], [8], [9], [10].

Some recent work detailed efficient architectures on Field
Programmable Gate Arrays (FPGAs) exploiting their dedicated
logic [11]. Fast carry chains are a distinctive feature of modern
FPGAs. They bypass the general routing network and allow
fast ripple carry addition. Such ressources have recently been
exploited in order to improve compressor trees [12], [13] and
large adders [14]. As a general fact, using this feature allows
fast and compact design by reducing routing pressure [15].

In this article we are interested in modular additions modulo
2n − 1 and 2n + 1 and propose efficient implementations on
FPGAs that makes use of the fast carry logic. In the remainder
of this section, we introduce the carry-chain mecanism. A
new modulo 2n− 1 adder for FPGAs is introduced in section
III and a new modulo 2n + 1 adder is described in section
V. Comparisons with other existing adders are detailled in
sections IV and VI.
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Fig. 1. Beuchat’s modulo 2n − 1 adders

II. GENERIC MODULAR ADDITION

The addition of two positive numbers X and Y modulo m
can be written as follows:

X + Y mod m =

{
X + Y −m, if X + Y ≥ m

X + Y, if X + Y < m
(1)

However in this way, this operation requires a comparison
that remains expensive in size and delay. For some specific
moduli m, the cost of the comparison can be reduced.

Let xk denote the bit of weight 2k in X , [X]p denote the
bits of X with weight larger than 2p−1, and [X]p−1 those with
weight smaller than 2p, in the way that,

X =

n−1∑
k=0

2kxk = [X]p2p + [X]p−1

We use also the notation |X|m for X mod m. It can be
noted that |X|2n = [X]n

III. CARRY-CHAIN MODULO 2n − 1 ADDERS

A. Modulo 2n − 1 addition with double zero representation

Zimmerman gave an equation for computing modulo 2n−1
addition [16]. It is, with our notations:

|X + Y |2n−1 =

{
[X + Y + 1]n, if X + Y ≥ 2n − 1

[X + Y ]n, if X + Y < 2n − 1
(2)

Several architectures have been proposed in [17] for this
operator (Fig. 1). Most of them use the output carry C of
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X + Y to decide to output [X+Y ]n or [X+Y +1]n. However,
when [X+Y ]n = 2n−1, they output 2n−1 instead of 0. This
implies a double representation of 0 because these numbers,
11 · · · 1 and 00 · · · 0 in binary, are congruent modulo 2n − 1.

B. Simplification for FPGA

Our proposition is to compute successively C and X+Y +C
using the same carry chain (Fig. 2). Furthermore, since only
the output carry is needed, the design can be compacted and
we can use up to 4 bits per LUT to compute C on modern
FPGAs.

This allows us to have a very low delay (avoiding muxes
and the main routing framework) and an area of 1.5× the area
of a n-bit adder.

z0 z1 z2 z3

x0 x1 y0 y1 x2 x3y2 y3 x0y0 x1y1 x2y2 x3y3{
{

carry computation

addition

c

Fig. 2. Example of 4-bit chained modular adder

Let x2i, x2i+1, y2i, and y2i+1 be the inputs of the i-th LUT,
Ci its carry input and Ci+1 its carry output. Their sum can be
expressed as follows:

si + 4Ci+1 = x2i + 2x2i+1 + y2i + 2y2i+1 + Ci

where we ignore si ∈ [0, 3]. Obviously, this sum is the sum
of two radix-4 digits and an input carry. Similarly to radix-2
addition, a carry is generated, propagated or killed depending
on the added digits.

It is possible to substitute the carry generation for radix-4
digits by the calculation of the carry generated by the sum of
two bits [18]. The idea is to build two tables f and g which
input the two radix-4 digits and produce two bits that we add.
These tables are constructed so that the sum of these bits has
the same generate, propagate and kill cases than for the sum
of two radix-4 digits.

More formally, we compute:

s′i + 2Ci+1 =f(x2i, x2i+1, y2i, y2i+1)+

g(x2i, x2i+1, y2i, y2i+1) + Ci

(3)

where:

f(x2i, x2i+1, y2i, y2i+1) =(x2i+1 � y2i+1)⊕
((x2i+1 ⊕ y2i+1)� (x2i ⊕ y2i))

g(x2i, x2i+1, y2i, y2i+1) =(x2i+1 � y2i+1)⊕
((x2i+1 ⊕ y2i+1)� (x2i � y2i))

C. HDL implementation

The HDL implementation of this architecture is greatly
simplified by equation (3). Indeed, the computation of the
output carry C of X + Y is the most significant bit of the
sum of two bit vectors and an input carry. The other bits of
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Fig. 3. Size and delay comparison between modulo 2n − 1 adders

the result are useless. This sum is efficiently inferred by the
design tools by using the fast carry mechanism of the targeted
FPGAs.

D. Single zero representation

Managing several representations for zero may not be prac-
tical in a more complex design using modular operators. Our
design can be adapted in order to get a single representation
of zero.

The second stage remains the same, while the first stage
simply computes the output carry of X + Y + 1 instead of
X+Y . The behaviour of this carry is summarized as follows:
• If X + Y ≥ 2n, the output carry of X + Y + 1 is still

Cout = 1.
• If X + Y < 2n − 1, then X + Y + 1 < 2n, and Cout

remains 0.
• If X+Y = 2n−1, this case used to generate the second

representation of 0. We now have X + Y + 1 = 2n, and
Cout = 1 instead of 0. Thus, according to equation (2),
the second stage outputs zero.

IV. COMPARISON WITH OTHER FPGA MODULO 2n − 1
ADDERS

We compared our adder to existing modulo 2n − 1 adders
for FPGA. Jean-Luc Beuchat proposed several of them [17]
which rely on the principle that the output carry of X + Y
should be injected back in the sum as an input carry. This can
be done on FPGA serially with a second adder (Fig. 1.c) or
by computing in parallel two sums with the two possible carry
values and a multiplexer (Fig. 1.a and Fig. 1.b).

The designs have been described in VHDL and synthetized,
placed and routed with Xilinx ISE 13.4. The targeted FPGA
is the Virtex 6 XC6VLX75T. The comparative results are
summarized in figure 3, where the upper graph shows the
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number of LUTs and the lower one shows the delay. The
displayed measures are respectively related to our adder, the
adders displayed in figure 1.a, 1.b and 1.c.

Our adder is slightly faster (4 to 10 percent depending on
widths) than its fastest competitors, and is much smaller. In-
deed, only three fourths of the area of the parallel architectures
is needed. Furthermore, our adder is about the same size as the
slower serial architecture, but is significally (up to 33 percent)
faster.

V. CARRY-CHAIN MODULO 2n + 1 ADDERS

A. Modulo 2n + 1 additions

If the modulus m is 2n+1, the equation (1) can be rewritten
as follows:

|X + Y |2n+1 =


|X + Y |2n , if X + Y < 2n

2n, if X + Y = 2n

|X + Y − 1|2n , if X + Y ≥ 2n + 1

(4)

The comparisons to 2n+1 involved in (4) can be substituted by
comparisons to 2n which are simpler to do. This substitution
can be made if we compute X+Y +1 rather than X+Y [17],
[19]. However, if we use the classic binary representation to
compute this addition, we introduce a bias at each addition.
This can be avoided by using diminished-one representation.
In this arithmetic, a number X is represented by X ′ = X − 1
[20]. Thus, there is no bias introduced in X ′+Y ′+1 because
the result is still in diminished-one. The drawback is that zero
can not be represented and extra logic is needed to manage
this case.

Let us note IX the bit that indicates if a number X is zero.
If X = 0 then IX = 0 and X ′ = 0.

1) Existing adders: Several modulo 2n+1 adders for FPGA
have been collected by Beuchat [17]. They are targetting
binary (Fig. 4.i to 4.k) or diminished-one input (Fig. 4.g and
4.h). Similarly to 2n − 1 adders, they are built using serial or
parallel structures.

From equation (4) it can be observed that the modular sum
|X+Y +1|2n+1 depends from the output carry Cout of X+Y .

The adders depicted in figure 4 are based on this observation
which is summarized as follows:

|X + Y + 1|2n+1 =

{∣∣X + Y + Cout

∣∣
2n

, if X + Y 6= 2n − 1

2n, if X + Y = 2n − 1
(5)

B. Simplification for FPGA

Similarly to our 2n − 1 adders, the adders we propose are
built in two stages. The first computes a carry that is injected
in the second stage which is a binary adder.

1) Diminished-one modular adder: The implementation of
equation (5) using diminished-one numbers is straightforward.
It is built from equation (6) which is adapted from eq. (5). It
gives a structure similar to our modulo 2n − 1 adder. We use
the same carry computation structure as a first stage and inject
the inverted carry into a binary adder. This adder (Fig. 5),
similarly to the adders in figure 4.g and 4.h, does not manage
the zero values.

∣∣X ′ + Y ′ + 1
∣∣
2n+1

=


X ′ + Y ′ + 1, if X ′ + Y ′ < 2n − 1

exception, if X ′ + Y ′ = 2n − 1∣∣X ′ + Y ′
∣∣
2n

, if X ′ + Y ′ ≥ 2n

(6)

Because of the structure of modern FPGA, we can not
insert an inverter in the carry chain as schematized. As a
consequence, we compute the inverted carry all along the chain
before the inversion point. Each level outputting an inverted
carry has an inverted carry as input, so we swap carry kill
and generate cases, and keep the propagate cases from our
original f and g functions. In practice, it suffices to use the
functions f and g and the opposite of the first carry input,
since f + g = 10b − (f + g).

2) Diminished-one modular adder with 0 management:
We remind that a number X is equal to zero if IX = 0
and its diminished-one representation X ′ = 0. The specific
management of zero arises in two cases:
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Fig. 4. Beuchat’s modulo 2n + 1 adders
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Fig. 5. Schematic of the diminished-one modulo 2n + 1 adder

Summing a 0: X = 0 or Y = 0, thus X ′ or Y ′ is zero. We
replace the computed carry Cout by 0 to get X ′+Y ′+0 = X ′

or X ′+Y ′+0 = Y ′. This is done by a simple logic between the
carry computation and the binary adder (Fig. 6). Furthermore,
IX+Y = 0 when IX = IY = 0.

The sum yields 0: In this case, X ′ and Y ′ are both non-
zero, X ′ + Y ′ = 2n − 1 and we should obtain X ′ + Y ′ +
Cout = 0 and IX+Y = 0. We already have Cout = 1, thus
X ′ + Y ′ + Cout = 2n. It comes without further modification
that X ′+Y ′+Cout = 0 on the n-bit adder, the most significant
bit being ignored.

Extra logic is required to compute IX+Y . We note C ′out the
output carry of X ′ + Y ′ + Cout. We know that if Cout = 1
then X ′ + Y ′ < 2n. When C ′out = 1, it also means that
X ′ + Y ′ + 1 ≥ 2n. Thus, X ′ + Y ′ = 2n − 1 if and only if
Cout = 1 and C ′out = 1.

The logic dealing with this case is placed at the output of
the carry on the second stage (Fig. 6).

X' Y'

(X'+Y') mod 2 +1n

Carry
Cout

I I

x+y

x y

I

Cout'

Fig. 6. Diminished-one modulo 2n + 1 adder with 0 management

3) Binary modular adder: This modulo 2n + 1 adder is
based on the adder proposed by Beuchat [17] which is depicted
in figure 4.k. Let us note Z = X + Y =

∑n+1
i=0 zi. His

proposition is based on the following equation:

|X + Y + 1|2n+1 = zn+1zn−1zn−2 · · · z0 + (zn+1 nor zn) (7)

Our modular adder illustrated in figure 7 is adapted from this
equation. From equation (7), the input carry of the adder is
(zn+1 nor zn). This carry which depends on the two most
significant bits of the sum (7) can be early computed as
follows.

Let Cout be the output carry of the sum of [X]n−1+[Y ]n−1.
We observe that (zn+1 nor zn) = not(Cout or xn or yn),
since zn+1 and zn can be computed by a full adder with inputs
xn, yn and Cout.

According to (7) we then sum this bit, [X]n−1, and [Y ]n−1.
This outputs a carry C ′out and the n− 1 least significant bits

of the result. The last bit is computed separately. We can see
from (4) that the n-th bit of |X + Y + 1|2n+1 is 1 in two
cases:

• if X = Y = 2n. In other words, if xn and yn are 1, or
• if X + Y = 2n − 1. This arises when X + Y < 2n and

X + Y + 1 ≥ 2n. In other words, it holds true when
Cout = xn = yn = 0 and C ′out = 1.

As a consequence, the most significant bit of the result is:

xn � yn ⊕ zn+1 ⊕ zn � C ′out

X Y

(X+Y+1)mod 2 +1n

Carry
Cout'

ynxn

zn+z n+1

xn yn [y] n-1[x] n-1

zn

Fig. 7. Binary modulo 2n + 1 adder

VI. COMPARISON WITH OTHER FPGA MODULO 2n + 1
ADDERS

In this section we will use the same procedures as in section
IV to perform our comparisons.

We compared our adders in diminished-one representation
to those Jean-Luc Beuchat proposed in [17], which respec-
tively have parallel (Fig. 4.g) and serial (Fig. 4.h) designs.
Note that only our adder without 0 management (Fig. 5) is
comparable, since the legacy adders do not manage the 0.

We display in the upper graph of figure 8 the size com-
parisons and in the lower one, the speed comparisons. The
displayed measures correspond to, from left to right, our adder
with 0 management, our adder without it, and the adders
displayed in figure 4.g and 4.h.

Again, our adder is about the size of its smallest competitor
and has about the speed of its fastest competitor. Adding the 0
management creates a negligeable overhead in size, but routing
the intermediate carry outside of the carry chain takes its toll
on the critical path. This effect however is less present with
longer chains (about 25% for n = 8, 10% for n = 40 and 2%
for n = 80).

We also compared our binary adder (Fig. 7) to those pro-
posed in [17], which have respectively designs that are parallel
a with multiplexer (Fig. 4.i), serial with a multiplexer (4.j), and
without multiplexer (4.k). The measures are displayed in that
order in figure 9, in the same fashion as before.

We can see here that our adder is clearly faster than its
competitors though the parallel architecture has approaching
performance. But all three non-parallel architectures have a
size of about 1.5× n whereas the parallel is over 2× n.
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Fig. 8. Comparison of modulo 2n+1 adders in diminished-one representation
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VII. CONCLUSION

In this paper we presented new fast and small FPGA
architectures for modular adders for the moduli 2n − 1 and
2n + 1. Because of the use of the carry chain structure that
can be found in all modern FPGAs, they are at least as fast
as their fastest competitors and smaller than the smallest.

Our adders are made of two parts, a carry computation and
a classical adder. This relies upon the following property of
the 2n − 1 and 2n + 1 moduli : the modular addition can be
rewritten as the modulo 2n addition to which we add 0 or 1.
These adders show significant improvements in size and space
compared to the existing adders for these architectures.

In the case of the 2n + 1 modulus, corner cases that were

not tackled by legacy adders have been managed by routing a
bit outside the carry chain, thereby sacrificing delay.
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