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Resilience trends

Error rates increase
• Hard faults: ageing, manufacturing variability
• Soft faults: particle strikes, voltage noise
• Memory subsystem most subject to faults

Known error rates
• Cielo supercomputer1: 1 error every 5h23min
• Mont-Blanc 1 prototype2: 1 error every 10min image dependablesystem.blogspot.com

1V. Sridharan et al. (2015). “Memory Errors in Modern Systems”. In:
ASPLOS XX, pp. 297–310.

2L. Bautista-Gomez et al. (2016). “Unprotected Computing”. In: SC’16,
55:1–55–11. o o
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Resilience trends

Main techniques today
• Sparing, adjusting refresh rate

I Mitigate hard faults
I Requires profiling

• Error Correcting Codes (ECC)
I Detect unforeseen errors
I Correct transparently

• Checkpointing-Rollback
I Enable recovery from crash

Limitations
• Yield too low

• Current ECC unable to address
projected fault rates

• High checkpoint overhead

F. Cappello et al. (2014). “Towards Exascale Resilience: 2014 update”.
In: SuperFri 1.1, pp. 5–28. o o
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Emergence of runtime systems
Programmability Wall
• Due to complex architectures

E.g. large core counts, heterogeneous architectures,
hybrid memory hierarchies, etc.
• Answer: new programming models

I Take complexity away from programmer
I Rely on supporting software:

the runtime system

Runtime system role
• Initial focus: transparent task scheduling
• Opportunity for other optimizations

E.g. accelerating critical tasks, enforcing a power budget,
partitioning caches, managing scratchpad memories, etc.
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Goal: exploiting runtime systems for cross-level resilience

Algorithm level (SC’15, TPDS 29:9)
• Novel forward recovery for a class of iterative solvers
• Runtimes allow to overlap computation and recovery

OS level (Multiprog 2019, IOLTS’19)
• Define metric that improves correlation with error risk
• Delay reporting errors to ignore non-consumed errors

Architectural level
• Sampling-based methodology to estimate vulnerability online
• Implemented on real-world hardware with low overhead
• Dynamically adjustable ECC guided allows to trade resilience for redundancy

o o
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State of the Art: Algorithmic Recoveries

Checkpointing / Rollback
A. Moody et al. (2010). “Design, Modeling, and Evaluation of a Scalable Multi-level Checkpointing
System”. In: SC’10, pp. 1–11
L. Bautista-Gomez et al. (2011). “FTI: High performance Fault Tolerance Interface for hybrid sys-
tems”. In: SC’11, 32:1–32:12
M. Bougeret et al. (2011). “Checkpointing strategies for parallel jobs”. In: SC’11, 33:1–33:11

Algorithm-specific

• Restart methods
J. Langou et al. (2007). “Recovery Patterns for Iterative Methods”. In:
SIAM J. Sci. Comput. 30.1, pp. 102–116
E. Agullo et al. (2016). “Numerical recovery strategies for parallel resilient
Krylov linear solvers”. In: Numer. Linear Algebra Appl. 23.5, pp. 888–905

• Check invariants Z. Chen (2013). “Online-ABFT”. In: PPoPP’13, pp. 167–176

o o
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State of the Art: Vulnerability Metrics

Existing Metrics
• AVF, specialised

for memory
• DVF
• LD/ST

S. S. Mukherjee et al. (2003). “A Systematic Methodology to Compute
the Architectural Vulnerability Factors”. In: MICRO 36, pp. 29–42
Y. Luo et al. (2014). “Characterizing Application Memory Error Vulner-
ability to Optimize Datacenter Cost”. In: DSN 2014, pp. 467–478

L. Yu et al. (2014). “Quantitatively Modeling Application Resilience
with the Data Vulnerability Factor”. In: SC’14, pp. 695–706

M. Gupta et al. (2018). “Reliability-Aware Data Placement for Hetero-
geneous Memory Architecture”. In: HPCA 2018, pp. 583–595

Error injection studies
G. Bronevetsky and B. R. de Supinski (2008). “Soft error vulnerability of iterative linear algebra
methods”. In: ICS’08, pp. 155–164
M. Casas et al. (2012). “Fault resilience of the algebraic multi-grid solver”. In: ICS’12, pp. 91–100

Applications
• Reliability-driven memory mapping
• Selective protection (ABFT, pointer triplication, . . . )

o o
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State of the Art: Dynamically Adaptable ECC

Two-level ECCs for DRAM

• Static: VS-ECC, Odd-ECC

D. H. Yoon and M. Erez (2010). “Virtualized and Flexible ECC
for Main Memory”. In: ASPLOS XV, pp. 397–408
A. Malek et al. (2017). “Odd-ECC”. In: MEMSYS’17, pp. 96–111

Sampling-based memory access patterns analysis

• Offline: bottleneck analysis. . .
Alfredo Giménez et al. (2014). “Dissecting On-node Memory
Access Performance”. In: SC’14, pp. 166–176
H. Servat et al. (2014). “Identifying Code Phases Using
Piece-Wise Linear Regressions”. In: IPDPS, pp. 941–951

• Online: miss rate curves on POWER5 D. K. Tam et al. (2009). “RapidMRC”. In:
ASPLOS XIV, pp. 121–132

o o
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Error model: memory DUE

Fault in memory
• ECC performs detection, attempts correction
• Detected Uncorrected Errors (DUE) may happen

I 27% of node down events caused by DUE1

• Reported in register: machine check exception

Application-level symptom
• Access DUE location ⇒ OS kills application
• Replace physical page: data lost!

Virt. page map Phys.

DUE

1S. Levy et al. (2018). “Lessons Learned from Memory Errors Observed
over the Lifetime of Cielo”. In: SC’18, 43:1–43:12. o o
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Extract redundancy from operations

Rewrite: 1 block per memory page
• Linear combination: ui = αvi + βwi
• Matrix-vector mult: qi = ∑

j
Aijdj

• 4KB page ⇒ 512 doubles

Reuse or “invert” relations
• vi = 1

α
(ui − βwi)

• Factorize diagonal blocks:
Aiidi = qi −

∑
j 6=i

Aijdj

= ·

q A d

o o
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Fine-grain algorithm-based error correction for CG
d ′ ⇐ 0
g ⇐ b − Ax
f o r t i n 0..tmax

ε⇐ ||g ||2
i f ε < tol :

break
β ⇐ ε / εold
d ⇐ βd ′ + g
q ⇐ Ad
α⇐ ε / < q, d >
x ⇐ x + αd
g ⇐ g − αq
εold ⇐ ε
swap (d ,d ′ )

colors: constant, dynamic

initial x

g = b − Ax

d ′ = A−1q g = b − Ax
d = βd ′ + g
q = Ad d = A−1q
d = A−1q x = A−1(b − g)
q = Ad g = b − Ax

Recover lost data
• Recompute from redundancy

existing in algorithm
I Recompute past operations
I Identify invariants, e.g. g = b − Ax

• No overhead for adding redundancy
• Exact recovery: converge as well as

without faults
• Forward recovery: no work reverted

Fully covers Krylov subspace iterative solvers
• Popular family of solvers: CG, GMRES, BiCGStab. . .
• Also works with preconditioners o o
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Task-based CG implementation

q
〈d , q〉

α
xgε

β

d

r1

r3
r2

OmpSs
• Asynchronous tasks
• Dataflow dependencies

Adding recoveries
• Skip “corrupted” computations
• Recovery computations in tasks

I before scalar tasks

o o
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Strategies to schedule recoveries

T1
T2
T3
T4

time

g

g
g

g
q 〈d , q〉 αr1
q 〈d , q〉
q 〈d , q〉
q 〈d , q〉

Critical path
• Conservative approach
“Forward Exact Interpolation Recovery” (FEIR)

T1
T2
T3
T4

g

g
g

g

time
q 〈d , q〉
q 〈d , q〉
q r1〈d , q〉
q α〈d , q〉 Overlap with work

• Reduce overhead
• Sacrifice error coverage
“Asynchronous FEIR” (AFEIR)

o o
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Compared methods

Ideal
• No faults baseline
Trivial
• No recovery, erratic
Checkpoint-Rollback
• Exact, backwards
Lossy Restart12
• Forward, lose some

convergence guarantees
FEIR
AFEIR
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1J. Langou et al. (2007). “Recovery Patterns for Iterative Methods”. In:
SIAM J. Sci. Comput. 30.1, pp. 102–116.

2E. Agullo et al. (2016). “Numerical recovery strategies for parallel resilient
Krylov linear solvers”. In: Numer. Linear Algebra Appl. 23.5, pp. 888–905. o o
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Results with fault injection
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Methodology
• Error injection: trigger signal on access

I For application, strictly identical
I MTBE scaled to baseline’s run time

• Single 8-core socket
• Geometric mean of overheads

CG and PCG evaluated
• 9 matrices1
• Block-Jacobi preconditioner

1T. A. Davis and Y. Hu (2011). “The University of Florida Sparse Matrix
Collection”. In: ACM Trans. Math. Softw. 38.1, 1:1–1:25. o o
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Summary
Algorithm level recovery
• Fine-grain recovery
• Desirable properties: Forward & Exact
• Uses inherent redundancy, easy to identify

Runtimes allow to overlap computation and recovery
• Mask overhead
• Trade-off with error coverage

Further results
• Redundancy relations used for BiCGStab, GMRES, preconditioned solvers
• Strong scaling (up to 1024 cores)
• Impact of memory page size

L. Jaulmes et al. (2015). “Exploiting Asynchrony from Exact Forward
Recovery for DUE in Iterative Solvers”. In: SC’15, 53:1–53:12

L. Jaulmes et al. (2018). “Asynchronous and Exact Forward Recovery for
Detected Errors in Iterative Solvers”. In: IEEE Trans. Parallel Distrib. Syst.
29.9, pp. 1961–1974 o o
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Intuition: faults only matter if consumed

timeCPU ST LD ST LD ST LD LD

memory

Memory Vulnerability Factor (MVF)
• Architectural Vulnerability Factor1 for memory
• Error overwritten by ST

ST ⇒ data safe
LD ⇒ data vulnerable

• MVF = fraction of vulnerable time (before LD)
• Upper bound on failure probability

1S. S. Mukherjee et al. (2003). “A Systematic Methodology to Compute
the Architectural Vulnerability Factors”. In: MICRO 36, pp. 29–42. o o
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Errors in data fetched from memory, but not consumed

Data fetched but unused
• Loaded speculatively
• Neighbour data (e.g. same cache line)
• Write-allocate cache on ST miss

Errors have no impact on the program
• Reporting them causes False Errors
• Solution: delay until data consumed

New Metric: False-Error Aware vulnerability (FEA)
• Data vulnerable only if consumed:

FEA = time before data consumed
total time = MVF − time before “unused fetch”

total time

• Still upper bound on failure probability

o o
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Vulnerability metrics in literature
Safe Ratio3

sr = safe time
total time = 1−MVF

Store ratio (proxy for MVF)4

As LD
LD+ST to fit in [0, 1] and correlate positively

Data Vulnerability Factor5

DVF =
∑

d∈data structures
error rate× sized × execution time×memory accessesd

• Detailed model for memory accesses, based on access pattern, cache sizes.

3Y. Luo et al. (2014). “Characterizing Application Memory Error
Vulnerability to Optimize Datacenter Cost”. In: DSN 2014, pp. 467–478

4M. Gupta et al. (2018). “Reliability-Aware Data Placement for
Heterogeneous Memory Architecture”. In: HPCA 2018, pp. 583–595

5L. Yu et al. (2014). “Quantitatively Modeling Application Resilience with
the Data Vulnerability Factor”. In: SC’14, pp. 695–706 o o
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Measure metrics and impact of errors
TaskSim1 to measure vulnerability
• Architectural simulator

I Simple core model
I Full cache hierarchy
I Ramulator2 for memory

• Uses real runtime
I Schedule tasks onto simulated cores
I Simulate tasks in detail

• Based on task traces
I Traced with DynamoRIO
I Records memory accesses,

basic blocks, runtime calls

REC

PLAY

Native runs to measure impact of errors
• Flip 1, 2, 3 bits or DUE (e.g. NaN)
• outcome crash, hang, wrong, slow or ok
• On Intel Xeon Platinum 8160

1A. Rico et al. (2011). “Trace-driven simulation of multithreaded
applications”. In: ISPASS, pp. 87–96.

2Y. Kim et al. (2016). “Ramulator: A Fast and Extensible DRAM
Simulator”. In: IEEE Comput. Archit. Lett. 15.1, pp. 45–49. o o
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Comparing metrics over various benchmarks
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Summary
False-Error Aware metric
• Identify errors that will not be consumed
• Best metric correlation with error risk
• Remains upper bound on error risk

Further results
• Metric comparison at memory page granularity
• Correlation coefficients
• DRAM refresh savings

L. Jaulmes et al. (2019b). “Memory Vulnerability: A Case for Delaying
Error Reporting”. In: Multiprog 2019

L. Jaulmes et al. (2019a). “Memory Vulnerability for ECC-protected
Memory”. In: IOLTS 2019 o o
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Dynamically adapting ECC online

Estimate FEA metric online: a methodology
• Identify memory access patterns in real time
• Compute fraction of time before LD
• Uses sampling of instructions

Dynamically adjustable ECC scheme
• ECC scheme with 2 protection levels
• Increase protection for pages identified as most vulnerable

o o
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Runtime vulnerability methodology

Gather information from hardware sampling
• Sample LD and ST target address and time

I PMU randomly selects instructions
I Record 1 in N selected instructions

• Only during “sampling phases”
I Control overhead: 0 cost when disabled

Extrapolate memory access pattern
from sampled instructions
• Aligned points ⇒ streaming patterns

I Kernel Hough Transform1

• Extrapolate streams to memory region
• Average time before LD as vulnerability
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samples
clusters
lines

1L. A. F. Fernandes and M. M. Oliveira (2008). “Real-time line detection
through an improved Hough transform”. In: Pattern Recog. 41.1, pp. 299–314. o o
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Implemented on POWER8
“Randomly” selected instructions

User-level interrupt to record
• Hand-written assembly routine
• Log to thread-local buffers

Technique overhead: sampling + analysis
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Online vulnerability values

 0%

20%

40%

60%

80%

100%

Black
sc

holes CG

DGEMM

Gauss
-Seidel

Jaco
bi

K-m
eans

KNN

N-body

PRK2 st
encil

Red-black SMI

Pe
rc

en
ta

ge
 o

f d
at

a

 0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Vu
ln

er
ab

ili
ty

Varied Vulnerability Behaviour
• To be used for stronger protection targeting

o o
28/36



WITSEC Is Targeted Strong Error Correction

Core ideas
• Apply strong ECC where needed

I Trade-off reliability vs. redundancy
• Dynamically switch normal ↔ strong ECC
• Extra redundancy in addressable memory

ECC Model
• Baseline: N bit flips (0 ≤ N < 3)
• Selected pages: N+1 bit flips

data 1 ECC 1
data 2 ECC 2
data 3 ECC 3
data 4 ECC 4

Baseline prot. page

 

data a ECC a
data b ECC b
data c ECC c
data d ECC d

Extended prot. page

ECC a ECC b ECC c ECC d
Suppl. ECC blocks

ECC ECC ECC ECC

...

o o
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WITSEC implementable in the memory controller
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Necessary extensions
• Strong (N+1) EC codec
• Extended-protection pages

I Physical address, size
I Corresponding suppl-

ementary ECC blocks

Supplementary extension
• ECC blocks cache
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Evaluation: trade-off reliability vs. redundancy
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Measurement
• Inject single, double and triple bit flips

I Vulnerability at injection time
I Outcome at the end of the run

• Failure probability per vulnerability threshold:
I Injection target above threshold ⇒ ok
I Otherwise use outcome: failure or ok

Trade-off applications
• Given a global reliability target,

apply optimal level of redundancy
• Given a redundancy budget,

get maximal reliability
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Summary
Sampling-based methodology to estimate vulnerability online
• Generic: only requires sampling capability
• Uses real-time algorithms to identify streaming memory access patterns
Evaluated on real-world hardware
• Using POWER8 performance monitoring unit
• Low overhead: 3.47%
WITSEC dynamically adjustable ECC
• Implementable in memory controller
• Allows to dynamically trade resilience for redundancy
Further results
• CPU vs Memory Vulnerability Comparison
• Event-Based Branch details

L. Jaulmes et al. (est. 2020). Adapting ECC Protection Dynamically using
Online Estimation of Memory Vulnerability. under preparation

L. Jaulmes (2018). Online sampling-based vulnerability estimator. GitHub.
url: https://github.com/lucjaulmes/online_vulnerability

o o
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Conclusion
Fine-grain algorithm-level recovery techniques
• Take full advantage of OS and HW support for DUE
• Overlap work and recover: never stop solving
False-Error Aware Metric
• Consistent upper bound, correlates best with failure risk
• Highlights opportunities from dead data in memory
WITSEC
• Dynamically adjust ECC to protect more the most vulnerable regions
• Detect most vulnerable regions online using sampling-based instrumentation

Runtime systems help optimise recoveries,
detect redundant data, and manage added redundancy.

o o
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Where to go from here
Extend existing work
• More algorithms, access patterns, different hardware. . .
• Using task dependency graphs for vulnerability estimation

Use “dead data” insight from FEA
• Skip DRAM refreshes, critical for future DRAM technologies
• Candidates for algorithmic optimisation, e.g. loop fusion for stencil codes

Runtime-aided error detection
• High DUE tolerance ⇒ lower SDC rate
• Data dependency information, task profiling

⇒ detect and contain errors on shared memory systems
• Programming-model support to express resilience

o o
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