
BARCELONATECH

UNIVERSITAT POLITÈCNICA
DE CATALUNYA

Exploiting Task-Based
Programming Models
for Resilience

PhD defense 21/06/2019

Luc Jaulmes
Advisors: Marc Casas,

Miquel Moretó

Resilience trends

Error rates increase
• Hard faults: ageing, manufacturing variability
• Soft faults: particle strikes, voltage noise
• Memory subsystem most subject to faults

Known error rates
• Cielo supercomputer1: 1 error every 5h23min
• Mont-Blanc 1 prototype2: 1 error every 10min image dependablesystem.blogspot.com

1V. Sridharan et al. (2015). “Memory Errors in Modern Systems”. In:
ASPLOS XX, pp. 297–310.

2L. Bautista-Gomez et al. (2016). “Unprotected Computing”. In: SC’16,
55:1–55–11. o o

1/36

Resilience trends

Main techniques today
• Sparing, adjusting refresh rate

I Mitigate hard faults
I Requires profiling

• Error Correcting Codes (ECC)
I Detect unforeseen errors
I Correct transparently

• Checkpointing-Rollback
I Enable recovery from crash

Limitations
• Yield too low

• Current ECC unable to address
projected fault rates

• High checkpoint overhead

F. Cappello et al. (2014). “Towards Exascale Resilience: 2014 update”.
In: SuperFri 1.1, pp. 5–28. o o

2/36

Emergence of runtime systems
Programmability Wall
• Due to complex architectures

E.g. large core counts, heterogeneous architectures,
hybrid memory hierarchies, etc.
• Answer: new programming models

I Take complexity away from programmer
I Rely on supporting software:

the runtime system

Runtime system role
• Initial focus: transparent task scheduling
• Opportunity for other optimizations

E.g. accelerating critical tasks, enforcing a power budget,
partitioning caches, managing scratchpad memories, etc.

1
10

100
1k

10k
100k

1M
10M

100M
1G

 1960 1970 1980 1990 2000 2010

Tr
an

si
st

or
s

(K
)

Date
Transistor count
Moore's Law

Frequency (MHz)
Dennard Scaling

Core count

o o
3/36

Goal: exploiting runtime systems for cross-level resilience

Algorithm level (SC’15, TPDS 29:9)
• Novel forward recovery for a class of iterative solvers
• Runtimes allow to overlap computation and recovery

OS level (Multiprog 2019, IOLTS’19)
• Define metric that improves correlation with error risk
• Delay reporting errors to ignore non-consumed errors

Architectural level
• Sampling-based methodology to estimate vulnerability online
• Implemented on real-world hardware with low overhead
• Dynamically adjustable ECC guided allows to trade resilience for redundancy

o o
4/36

State of the Art: Algorithmic Recoveries

Checkpointing / Rollback
A. Moody et al. (2010). “Design, Modeling, and Evaluation of a Scalable Multi-level Checkpointing
System”. In: SC’10, pp. 1–11
L. Bautista-Gomez et al. (2011). “FTI: High performance Fault Tolerance Interface for hybrid sys-
tems”. In: SC’11, 32:1–32:12
M. Bougeret et al. (2011). “Checkpointing strategies for parallel jobs”. In: SC’11, 33:1–33:11

Algorithm-specific

• Restart methods
J. Langou et al. (2007). “Recovery Patterns for Iterative Methods”. In:
SIAM J. Sci. Comput. 30.1, pp. 102–116
E. Agullo et al. (2016). “Numerical recovery strategies for parallel resilient
Krylov linear solvers”. In: Numer. Linear Algebra Appl. 23.5, pp. 888–905

• Check invariants Z. Chen (2013). “Online-ABFT”. In: PPoPP’13, pp. 167–176

o o
5/36

State of the Art: Vulnerability Metrics

Existing Metrics
• AVF, specialised

for memory
• DVF
• LD/ST

S. S. Mukherjee et al. (2003). “A Systematic Methodology to Compute
the Architectural Vulnerability Factors”. In: MICRO 36, pp. 29–42
Y. Luo et al. (2014). “Characterizing Application Memory Error Vulner-
ability to Optimize Datacenter Cost”. In: DSN 2014, pp. 467–478

L. Yu et al. (2014). “Quantitatively Modeling Application Resilience
with the Data Vulnerability Factor”. In: SC’14, pp. 695–706

M. Gupta et al. (2018). “Reliability-Aware Data Placement for Hetero-
geneous Memory Architecture”. In: HPCA 2018, pp. 583–595

Error injection studies
G. Bronevetsky and B. R. de Supinski (2008). “Soft error vulnerability of iterative linear algebra
methods”. In: ICS’08, pp. 155–164
M. Casas et al. (2012). “Fault resilience of the algebraic multi-grid solver”. In: ICS’12, pp. 91–100

Applications
• Reliability-driven memory mapping
• Selective protection (ABFT, pointer triplication, . . .)

o o
6/36

State of the Art: Dynamically Adaptable ECC

Two-level ECCs for DRAM

• Static: VS-ECC, Odd-ECC

D. H. Yoon and M. Erez (2010). “Virtualized and Flexible ECC
for Main Memory”. In: ASPLOS XV, pp. 397–408
A. Malek et al. (2017). “Odd-ECC”. In: MEMSYS’17, pp. 96–111

Sampling-based memory access patterns analysis

• Offline: bottleneck analysis. . .
Alfredo Giménez et al. (2014). “Dissecting On-node Memory
Access Performance”. In: SC’14, pp. 166–176
H. Servat et al. (2014). “Identifying Code Phases Using
Piece-Wise Linear Regressions”. In: IPDPS, pp. 941–951

• Online: miss rate curves on POWER5 D. K. Tam et al. (2009). “RapidMRC”. In:
ASPLOS XIV, pp. 121–132

o o
7/36

Outline

Motivation

Algorithmic-based DUE Recovery

Measuring Vulnerability in Memory

Dynamically Adaptable ECC

Conclusion

o o
8/36

Error model: memory DUE

Fault in memory
• ECC performs detection, attempts correction
• Detected Uncorrected Errors (DUE) may happen

I 27% of node down events caused by DUE1

• Reported in register: machine check exception

Application-level symptom
• Access DUE location ⇒ OS kills application
• Replace physical page: data lost!

Virt. page map Phys.

DUE

1S. Levy et al. (2018). “Lessons Learned from Memory Errors Observed
over the Lifetime of Cielo”. In: SC’18, 43:1–43:12. o o

9/36

Extract redundancy from operations

Rewrite: 1 block per memory page
• Linear combination: ui = αvi + βwi
• Matrix-vector mult: qi = ∑

j
Aijdj

• 4KB page ⇒ 512 doubles

Reuse or “invert” relations
• vi = 1

α
(ui − βwi)

• Factorize diagonal blocks:
Aiidi = qi −

∑
j 6=i

Aijdj

= ·

q A d

o o
10/36

Fine-grain algorithm-based error correction for CG
d ′ ⇐ 0
g ⇐ b − Ax
f o r t i n 0..tmax

ε⇐ ||g ||2
i f ε < tol :

break
β ⇐ ε / εold
d ⇐ βd ′ + g
q ⇐ Ad
α⇐ ε / < q, d >
x ⇐ x + αd
g ⇐ g − αq
εold ⇐ ε
swap (d ,d ′)

colors: constant, dynamic

initial x

g = b − Ax

d ′ = A−1q g = b − Ax
d = βd ′ + g
q = Ad d = A−1q
d = A−1q x = A−1(b − g)
q = Ad g = b − Ax

Recover lost data
• Recompute from redundancy

existing in algorithm
I Recompute past operations
I Identify invariants, e.g. g = b − Ax

• No overhead for adding redundancy
• Exact recovery: converge as well as

without faults
• Forward recovery: no work reverted

Fully covers Krylov subspace iterative solvers
• Popular family of solvers: CG, GMRES, BiCGStab. . .
• Also works with preconditioners o o

11/36

Task-based CG implementation

q
〈d , q〉

α
xgε

β

d

r1

r3
r2

OmpSs
• Asynchronous tasks
• Dataflow dependencies

Adding recoveries
• Skip “corrupted” computations
• Recovery computations in tasks

I before scalar tasks

o o
12/36

Strategies to schedule recoveries

T1
T2
T3
T4

time

g

g
g

g
q 〈d , q〉 αr1
q 〈d , q〉
q 〈d , q〉
q 〈d , q〉

Critical path
• Conservative approach
“Forward Exact Interpolation Recovery” (FEIR)

T1
T2
T3
T4

g

g
g

g

time
q 〈d , q〉
q 〈d , q〉
q r1〈d , q〉
q α〈d , q〉 Overlap with work

• Reduce overhead
• Sacrifice error coverage
“Asynchronous FEIR” (AFEIR)

o o
13/36

Compared methods

Ideal
• No faults baseline
Trivial
• No recovery, erratic
Checkpoint-Rollback
• Exact, backwards
Lossy Restart12
• Forward, lose some

convergence guarantees
FEIR
AFEIR

-10

-5

0

 0 10 20 30 40 50 60 70

lo
g(

re
si

du
al

)

time (s)

AFEIR
FEIR

Lossy
ckpt
Ideal

 29 30 31

1J. Langou et al. (2007). “Recovery Patterns for Iterative Methods”. In:
SIAM J. Sci. Comput. 30.1, pp. 102–116.

2E. Agullo et al. (2016). “Numerical recovery strategies for parallel resilient
Krylov linear solvers”. In: Numer. Linear Algebra Appl. 23.5, pp. 888–905. o o

14/36

Results with fault injection

1%

10%

100%

1000%

1 2 5 10 20 50 1 2 5 10 20 50
1%

10%

100%

1000%

CG mean PCG mean

Pe
rf

or
m

an
ce

 S
lo

w
do

w
n

errors injected

AFEIR FEIR Lossy ckpt trivial

Methodology
• Error injection: trigger signal on access

I For application, strictly identical
I MTBE scaled to baseline’s run time

• Single 8-core socket
• Geometric mean of overheads

CG and PCG evaluated
• 9 matrices1
• Block-Jacobi preconditioner

1T. A. Davis and Y. Hu (2011). “The University of Florida Sparse Matrix
Collection”. In: ACM Trans. Math. Softw. 38.1, 1:1–1:25. o o

15/36

Summary
Algorithm level recovery
• Fine-grain recovery
• Desirable properties: Forward & Exact
• Uses inherent redundancy, easy to identify

Runtimes allow to overlap computation and recovery
• Mask overhead
• Trade-off with error coverage

Further results
• Redundancy relations used for BiCGStab, GMRES, preconditioned solvers
• Strong scaling (up to 1024 cores)
• Impact of memory page size

L. Jaulmes et al. (2015). “Exploiting Asynchrony from Exact Forward
Recovery for DUE in Iterative Solvers”. In: SC’15, 53:1–53:12

L. Jaulmes et al. (2018). “Asynchronous and Exact Forward Recovery for
Detected Errors in Iterative Solvers”. In: IEEE Trans. Parallel Distrib. Syst.
29.9, pp. 1961–1974 o o

16/36

Outline

Motivation

Algorithmic-based DUE Recovery

Measuring Vulnerability in Memory

Dynamically Adaptable ECC

Conclusion

o o
17/36

Intuition: faults only matter if consumed

timeCPU ST LD ST LD ST LD LD

memory

Memory Vulnerability Factor (MVF)
• Architectural Vulnerability Factor1 for memory
• Error overwritten by ST

ST ⇒ data safe
LD ⇒ data vulnerable

• MVF = fraction of vulnerable time (before LD)
• Upper bound on failure probability

1S. S. Mukherjee et al. (2003). “A Systematic Methodology to Compute
the Architectural Vulnerability Factors”. In: MICRO 36, pp. 29–42. o o

18/36

Errors in data fetched from memory, but not consumed

Data fetched but unused
• Loaded speculatively
• Neighbour data (e.g. same cache line)
• Write-allocate cache on ST miss

Errors have no impact on the program
• Reporting them causes False Errors
• Solution: delay until data consumed

New Metric: False-Error Aware vulnerability (FEA)
• Data vulnerable only if consumed:

FEA = time before data consumed
total time = MVF − time before “unused fetch”

total time

• Still upper bound on failure probability

o o
19/36

Vulnerability metrics in literature
Safe Ratio3

sr = safe time
total time = 1−MVF

Store ratio (proxy for MVF)4

As LD
LD+ST to fit in [0, 1] and correlate positively

Data Vulnerability Factor5

DVF =
∑

d∈data structures
error rate× sized × execution time×memory accessesd

• Detailed model for memory accesses, based on access pattern, cache sizes.

3Y. Luo et al. (2014). “Characterizing Application Memory Error
Vulnerability to Optimize Datacenter Cost”. In: DSN 2014, pp. 467–478

4M. Gupta et al. (2018). “Reliability-Aware Data Placement for
Heterogeneous Memory Architecture”. In: HPCA 2018, pp. 583–595

5L. Yu et al. (2014). “Quantitatively Modeling Application Resilience with
the Data Vulnerability Factor”. In: SC’14, pp. 695–706 o o

20/36

Measure metrics and impact of errors
TaskSim1 to measure vulnerability
• Architectural simulator

I Simple core model
I Full cache hierarchy
I Ramulator2 for memory

• Uses real runtime
I Schedule tasks onto simulated cores
I Simulate tasks in detail

• Based on task traces
I Traced with DynamoRIO
I Records memory accesses,

basic blocks, runtime calls

REC

PLAY

Native runs to measure impact of errors
• Flip 1, 2, 3 bits or DUE (e.g. NaN)
• outcome crash, hang, wrong, slow or ok
• On Intel Xeon Platinum 8160

1A. Rico et al. (2011). “Trace-driven simulation of multithreaded
applications”. In: ISPASS, pp. 87–96.

2Y. Kim et al. (2016). “Ramulator: A Fast and Extensible DRAM
Simulator”. In: IEEE Comput. Archit. Lett. 15.1, pp. 45–49. o o

21/36

Comparing metrics over various benchmarks

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

KNN FFT
Stre

am
Jacobi

Blackscholes

Cholesky

DGEMM SMI CG

PRK2 stencil

Gauss-Seidel

Red-black

Average

Fa
ilu

re
 p

ro
ba

bi
lit

y,
 V

ul
ne

ra
bi

lit
y

DUE
3 flips
2 flips
1 flip

FEA
MVF
LD / (LD + ST)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

KNN FFT
Stre

am
Jacobi

Blackscholes

Cholesky

DGEMM SMI CG

PRK2 stencil

Gauss-Seidel

Red-black

Average

1e7
1e9

1e11
1e13

Fa
ilu

re
 p

ro
ba

bi
lit

y,
 V

ul
ne

ra
bi

lit
y

DVF

1e7
1e9

1e11
1e13

Failure = crash + hang + wrong + slow outcomes, success = ok outcomes o o
22/36

Summary
False-Error Aware metric
• Identify errors that will not be consumed
• Best metric correlation with error risk
• Remains upper bound on error risk

Further results
• Metric comparison at memory page granularity
• Correlation coefficients
• DRAM refresh savings

L. Jaulmes et al. (2019b). “Memory Vulnerability: A Case for Delaying
Error Reporting”. In: Multiprog 2019

L. Jaulmes et al. (2019a). “Memory Vulnerability for ECC-protected
Memory”. In: IOLTS 2019 o o

23/36

Outline

Motivation

Algorithmic-based DUE Recovery

Measuring Vulnerability in Memory

Dynamically Adaptable ECC

Conclusion

o o
24/36

Dynamically adapting ECC online

Estimate FEA metric online: a methodology
• Identify memory access patterns in real time
• Compute fraction of time before LD
• Uses sampling of instructions

Dynamically adjustable ECC scheme
• ECC scheme with 2 protection levels
• Increase protection for pages identified as most vulnerable

o o
25/36

Runtime vulnerability methodology

Gather information from hardware sampling
• Sample LD and ST target address and time

I PMU randomly selects instructions
I Record 1 in N selected instructions

• Only during “sampling phases”
I Control overhead: 0 cost when disabled

Extrapolate memory access pattern
from sampled instructions
• Aligned points ⇒ streaming patterns

I Kernel Hough Transform1

• Extrapolate streams to memory region
• Average time before LD as vulnerability

A
dd

re
ss

 a
cc

es
se

d
by

 s
am

pl
e

Time of sample in sampling phase

samples
clusters
lines

1L. A. F. Fernandes and M. M. Oliveira (2008). “Real-time line detection
through an improved Hough transform”. In: Pattern Recog. 41.1, pp. 299–314. o o

26/36

Implemented on POWER8
“Randomly” selected instructions

User-level interrupt to record
• Hand-written assembly routine
• Log to thread-local buffers

Technique overhead: sampling + analysis

0%

2%

4%

6%

8%

10%

12%

2 5 10 50 20
0 2 5 10 50 20
0 2 5 10 50 20
0

100% 50% 10%

O
ve

rh
ea

d

Fraction of time spent sampling; Sample period

Sampling period of 2,
enabled 50% of the time:

3.47% overhead

o o
27/36

Online vulnerability values

 0%

20%

40%

60%

80%

100%

Black
sc

holes CG

DGEMM

Gauss
-Seidel

Jaco
bi

K-m
eans

KNN

N-body

PRK2 st
encil

Red-black SMI

Pe
rc

en
ta

ge
 o

f d
at

a

 0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Vu
ln

er
ab

ili
ty

Varied Vulnerability Behaviour
• To be used for stronger protection targeting

o o
28/36

WITSEC Is Targeted Strong Error Correction

Core ideas
• Apply strong ECC where needed

I Trade-off reliability vs. redundancy
• Dynamically switch normal ↔ strong ECC
• Extra redundancy in addressable memory

ECC Model
• Baseline: N bit flips (0 ≤ N < 3)
• Selected pages: N+1 bit flips

data 1 ECC 1
data 2 ECC 2
data 3 ECC 3
data 4 ECC 4

Baseline prot. page

data a ECC a
data b ECC b
data c ECC c
data d ECC d

Extended prot. page

ECC a ECC b ECC c ECC d
Suppl. ECC blocks

ECC ECC ECC ECC

...

o o
29/36

WITSEC implementable in the memory controller

data ECC

ECC ECC ECC ECC

ECC

O
n-

C
hi

p
B

us
: D

ec
od

ed
 d

at
a N EC codec

D
R

A
M

 D
at

a
B

us
: E

nc
od

ed
 d

at
a

N+1 EC codec

data ECC ECC
Block
Cache

DRAM Bus Scheduler

DRAM Address/Command Bus

LLC/peripherals Requests

Extended Protection Page
to ECC Block Mapping

Memory Controller
Configuration Registers

Check ECC level

M
em

or
y

C
on

tr
ol

le
r

D
R

A
M

Insert LD to
ECC block

Write-back
dirty ECC

block as ST

Remove LD
to cached

ECC blocks
Requests Buffer

ST Baseline prot.
LD Baseline prot.

LD Extended prot.
LD Suppl. ECC block

...

...LD Extended prot.

Suppl. ECC line

Extended prot. line

Baseline prot. line

(D)

(C)

(A)

(B)

C
or

es
,

C
ac

he
s

C CCCCCCCC

Last Level Cache

Necessary extensions
• Strong (N+1) EC codec
• Extended-protection pages

I Physical address, size
I Corresponding suppl-

ementary ECC blocks

Supplementary extension
• ECC blocks cache

o o
30/36

Evaluation: trade-off reliability vs. redundancy

-7
-6
-5
-4
-3
-2
-1
 0

0% 20% 40% 60% 80% 0% 20% 40% 60% 80% 0% 20% 40% 60% 80%
ZEC SEC DEC TEC

lo
g

pr
ob

ab
ili

ty
 o

f
fa

ilu
re

Added Redundancy

CG
SMI
Jacobi

Measurement
• Inject single, double and triple bit flips

I Vulnerability at injection time
I Outcome at the end of the run

• Failure probability per vulnerability threshold:
I Injection target above threshold ⇒ ok
I Otherwise use outcome: failure or ok

Trade-off applications
• Given a global reliability target,

apply optimal level of redundancy
• Given a redundancy budget,

get maximal reliability

o o
31/36

Summary
Sampling-based methodology to estimate vulnerability online
• Generic: only requires sampling capability
• Uses real-time algorithms to identify streaming memory access patterns
Evaluated on real-world hardware
• Using POWER8 performance monitoring unit
• Low overhead: 3.47%
WITSEC dynamically adjustable ECC
• Implementable in memory controller
• Allows to dynamically trade resilience for redundancy
Further results
• CPU vs Memory Vulnerability Comparison
• Event-Based Branch details

L. Jaulmes et al. (est. 2020). Adapting ECC Protection Dynamically using
Online Estimation of Memory Vulnerability. under preparation

L. Jaulmes (2018). Online sampling-based vulnerability estimator. GitHub.
url: https://github.com/lucjaulmes/online_vulnerability

o o
32/36

https://github.com/lucjaulmes/online_vulnerability

Outline

Motivation

Algorithmic-based DUE Recovery

Measuring Vulnerability in Memory

Dynamically Adaptable ECC

Conclusion

o o
33/36

Conclusion
Fine-grain algorithm-level recovery techniques
• Take full advantage of OS and HW support for DUE
• Overlap work and recover: never stop solving
False-Error Aware Metric
• Consistent upper bound, correlates best with failure risk
• Highlights opportunities from dead data in memory
WITSEC
• Dynamically adjust ECC to protect more the most vulnerable regions
• Detect most vulnerable regions online using sampling-based instrumentation

Runtime systems help optimise recoveries,
detect redundant data, and manage added redundancy.

o o
34/36

Where to go from here
Extend existing work
• More algorithms, access patterns, different hardware. . .
• Using task dependency graphs for vulnerability estimation

Use “dead data” insight from FEA
• Skip DRAM refreshes, critical for future DRAM technologies
• Candidates for algorithmic optimisation, e.g. loop fusion for stencil codes

Runtime-aided error detection
• High DUE tolerance ⇒ lower SDC rate
• Data dependency information, task profiling

⇒ detect and contain errors on shared memory systems
• Programming-model support to express resilience

o o
35/36

List of publications
First author publications:

• L. Jaulmes, M. Casas, M. Moretó, E. Ayguadé, J. Labarta, and M. Valero (2015). “Exploiting Asynchrony from Exact Forward
Recovery for DUE in Iterative Solvers”. In: SC’15, 53:1–53:12. Nominated for the best paper award.

• L. Jaulmes, M. Moretó, E. Ayguadé, J. Labarta, M. Valero, and M. Casas (2018). “Asynchronous and Exact Forward Recovery for
Detected Errors in Iterative Solvers”. In: IEEE Trans. Parallel Distrib. Syst. 29.9, pp. 1961–1974

• L. Jaulmes, M. Moretó, M. Valero, and M. Casas (2019b). “Memory Vulnerability: A Case for Delaying Error Reporting”. In:
Multiprog 2019

• L. Jaulmes, M. Moretó, M. Valero, and M. Casas (2019a). “Memory Vulnerability for ECC-protected Memory”. In: IOLTS 2019

Other publications:
• M. Casas, M. Moreto, L. Alvarez, E. Castillo, D. Chasapis, T. Hayes, L. Jaulmes, O. Palomar, O. Unsal, A. Cristal,

Eduard Ayguadé, J. Labarta, and M. Valero (2015). “Runtime-Aware Architectures”. In: Euro-Par 2015, pp. 16–27
• D. Richards and L. Jaulmes (2014). “CoMD in Chapel: The Good, the Bad, and the Ugly”. In: Chapel Lightning Talks,

Birds-of-a-Feather session at SC’14

Publicly available code:
• Luc Jaulmes (2016). Resilient CG implementation. GitHub. url: https://github.com/lucjaulmes/resilient_cg (visited on

01/23/2019)
• L. Jaulmes (2018). Online sampling-based vulnerability estimator. GitHub. url:

https://github.com/lucjaulmes/online_vulnerability (visited on 11/01/2018)
• Luc Jaulmes (2019). OmpSs Fault Tolerance Benchmarks. GitHub. url:

https://github.com/lucjaulmes/ompss_fault_tolerance_benchmarks (visited on 01/23/2019)

o o

https://github.com/lucjaulmes/resilient_cg
https://github.com/lucjaulmes/online_vulnerability
https://github.com/lucjaulmes/ompss_fault_tolerance_benchmarks

	1. Motivation
	Resilience trends
	Resilience trends
	Emergence of runtime systems
	Goal: exploiting runtime systems for cross-level resilience
	block title example.fgState of the Art: Algorithmic Recoveries
	State of the Art: Vulnerability Metrics
	block title alerted.fgState of the Art: Dynamically Adaptable ECC

	2. Algorithmic-based DUE Recovery
	Error model: memory DUE
	Extract redundancy from operations
	Fine-grain algorithm-based error correction for CG
	Task-based CG implementation
	Strategies to schedule recoveries
	Compared methods
	Results with fault injection
	Summary

	3. Measuring Vulnerability in Memory
	Intuition: faults only matter if consumed
	Errors in data fetched from memory, but not consumed
	Vulnerability metrics in literature
	Measure metrics and impact of errors
	Comparing metrics over various benchmarks
	Summary

	4. Dynamically Adaptable ECC
	Dynamically adapting ECC online
	Runtime vulnerability methodology
	Implemented on POWER8
	Online vulnerability values
	WITSEC Is Targeted Strong Error Correction
	WITSEC implementable in the memory controller
	Evaluation: trade-off reliability vs. redundancy
	Summary

	5. Conclusion
	Conclusion
	Where to go from here
	
	List of publications

	Appendix
	Taxonomy of resilience
	Scaling results: speedup
	``Constant'' data?
	Redundancy in the Conjugate Gradient (CG)
	Multiple faults
	Need to postpone recoveries
	Double buffering of d
	Close-up of asynchrony: traces
	Compare application-based recoveries fault models
	Metrics and fault injections with cache effect
	Looking in detail: 200 random memory pages of FFT
	Metrics and DUE injections correlation coefficients
	Real sampling patterns
	PMU user-level interrupt: Event Based Branching (EBB)
	Task Dependency Graph (TDG) to estimate vulnerability
	Vulnerability over time of CG data structures
	All reliability vs. redundancy trade-offs

